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ABSTRACT 
 
 Current AISC-LRFD code requires that the moment-rotation characteristics of 

connections be known. Moreover, it requires that these characteristics be incorporated in 

the analysis and member design under factored loads (AISC, 2001). Conventional 

modeling approaches to improve the prediction of cyclic behavior starts with a choice of 

a phenomenological model followed by calibration of the model parameters. However, 

not only is the improvement limited due to inherent limitations of this approach, but also 

test results indicate a large variability in load-carrying capacity under earthquake loading.  

 In this research, a new neural network (NN) based cyclic material model is applied to 

inelastic hysteretic behavior of connections. In the proposed model, two energy-based 

internal variables are introduced to expedite the learning of hysteretic behavior of 

materials or structural components. The model has significant advantages over 

conventional models in that it can handle complex behavior due to local buckling and 

tearing of connecting elements. Moreover, its numerical implementation is more efficient 

than the conventional models since it does not need an interaction equation and a plastic 

potential. A new approach based on a self-learning simulation algorithm is used to 

characterize the hysteretic behavior of the connections from structural tests. The proposed 

approach is verified by applying it to both synthetic and experimental examples. For its 

practical application in semi-rigid connections, design variables are included as inputs to 

the model through a physical principle based module. The extended model also gives 

reasonable predictions under earthquake loads even when it is presented with new 

geometrical properties and loading scenario as well. 
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CHAPTER 1 INTRODUCTION 

1.1 Problem Description and Motivation 

One essential philosophy of seismic provisions in modern building codes is to make 

structures behave in a ductile manner under earthquakes without collapse. In the case of 

steel moment-frame buildings, the nonlinear behavior of beam-column connections 

significantly affects the dynamic response under earthquakes since connection regions are 

one of the primary sources of hysteretic damping. Because of lack of understanding the 

actual nonlinear hysteretic behavior of welded-flange-bolted-web connection under 

earthquakes, significant economic losses occurred as a result of many brittle connection 

failures in the 1994 Northridge earthquake even though it was following basic seismic 

provisions of the building codes. Since then, many other ductile connection types have 

been researched through experiments. Therefore, accurate and reliable characterization of 

the behavior of various connection types is very important both in the seismic design and 

life-time safety of steel moment-frame buildings. Evidently, current AISC-LRFD code 

requires that the moment-rotation characteristics of connections be known and these 

characteristics be incorporated in analysis and member design under factored loads 

(AISC 2001).  

 Since the behavior of the connections under earthquakes can be very much different 

from that under monotonic loading, its load-carrying capacity under severe earthquake 

loading should be ensured to meet seismic provisions of the building codes. The basic 

requirement in seismic design of connections is a balanced stiffness-strength-ductility 

capacity of connections. From a design point of view, the ductility and deformational 
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capacity are major interests and it is noteworthy that they are functions of yield 

mechanisms and critical failure modes of the connection. Therefore, reliable predictions 

of the resistance of the yield mechanism and failure mode are required. The ductile 

connection performance can be assured by having lower resistance of a yield mechanism 

than that of any critical brittle failure mode. According to extensive experimental 

research on various connection types so far, many different yield mechanisms and failure 

modes under cyclic loading are possible even for the same connection type. This occurs 

because the cyclic behavior of the connection depends on its detailed geometric 

properties, variations in construction quality and proximity between yield mechanisms 

and critical failure modes. Moreover, there are various topological connection types used 

in practice; welded-flange-bolted-web connection; extended-end-plate connection; T-stub 

connection; double-flange-angle connection; connections with reduced beam section, and 

so on.  

 Over the past several decades, there have been numerous research efforts on new or 

improved connections by experiments and comparisons with analytical models for 

behavior of connections. However, experiments on some of the connection types were 

conducted under monotonic loading. Using simple concepts of load path, equilibrium and 

simple mechanics, many equations to define yield mechanisms and failure/yield moments 

were suggested and validated with experimental results. They, however, can be used only 

for design purposes. To characterize the cyclic behavior of connections and implement it 

in structural analysis programs, the connection behavior is frequently modeled with 

simplified analytical models such as bilinear and tri-linear models (FEMA-355F 2000). 

Of course, there are highly sophisticated models for accurately representing the complex 
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inelastic behavior of connections such as multi-linear or nonlinear model accounting for 

stiffness and strength degradation as well as pinching effect during its cyclic loop. 

However, not only do they have limitations in accuracy due to their inherent assumptions 

and simplifications but also they are highly dependent on the given connections tested. 

Moreover, careful calibrations of the experimental results are required before using them. 

Furthermore, the modeling of interactions between connecting elements and other 

complex behavior such as local buckling and tearing of components is still challenging 

and remains unresolved with existing phenomenological models. Considering the fact 

that there has been no standard and systematic procedure for developing 

phenomenological models from experimental data, variations of the models are inevitable. 

It is worthwhile to mention that modeling errors can lead to inaccurate predictions of the 

connection stiffness during cyclic response and result in significant error in seismic 

performance evaluations of steel moment-frame buildings by existing analytical or 

phenomenological connections models.   

 In summary, the motivations of this research are to overcome those limitations of 

conventional phenomenological models for characterizing the inelastic hysteretic 

behavior of connections and to provide new and direct modeling approach to inelastic 

hysteretic behavior of connections from experimental data. 

 

1.2  Information-based Cyclic Material Modeling 

Neural Networks (NN) have been applied in material modeling instead of 

phenomenological models. Potential applications of the NN approach in material 

modeling were first suggested by Ghaboussi et al. (Ghaboussi, et al. 1991) and it has been 
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extensively researched for  various applications such as modeling of soil material 

(Hashash, et al. 2003), metal plasticity and time-dependent behavior of concrete materials 

(Jung and Ghaboussi 2006). A unique advantage of NN based constitutive models is that 

they are trained to learn the material behavior directly from experimental stress-strain 

data. If the training data contains sufficient information, then the trained NN can learn the 

material behavior and function as a constitutive model in computational mechanics. 

However, the usual modeling of the material behavior with NN requires the results of 

comprehensive material tests that may not always be available, and in some case not 

possible. To facilitate the use of the NN based material model, an auto-progressive 

training algorithm was proposed by Ghaboussi, et al. (Ghaboussi, et al. 1998a). The latter 

can perform on-line training of the NN based material model through the incorporation of 

experimental measurements with conventional incremental-iterative nonlinear finite 

element analysis.  

 For capturing the path-dependent material behavior, several past states of stresses 

and strains along the equilibrium path are used as inputs in conventional NN based 

models. Total or incremental stresses and strains were used in the NN based material 

models. However, difficulties are frequently encountered when the NN based model is 

requested to learn complex cyclic material behavior in multi-dimensional stress space. 

Modeling of cyclic behavior of structural components and materials is very important in 

predicting the response of structures subjected to earthquake loading. Even though the 

NN has been extensively used for material modeling, they have been limited to 

monotonic behavior and one-dimensional problems in the case of cyclic behavior. 

However, the potential of the NN based model is immense so it can be applied to 
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complex cyclic material behavior. To open up practical applications of the NN based 

material model to many engineering problems, a new robust cyclic material model using 

the learning capabilities of the NN is suggested as one of the objectives in this report. 

 

1.3 Objectives and Research Significance 

The objectives of this report are 1) Development of a new NN based cyclic material 

model for inelastic hysteretic behavior of steel beam-column connections (the NN based 

cyclic material model for application to steel beam-column connections are named as NN 

based connection model or simply NN based model later); 2) Development of a self-

learning simulation framework that can enable development of the NN based connection 

model directly from local and global structural testing; 3) Development of a generalized 

hybrid NN (GHNN) based inelastic hysteretic model that includes design variables. The 

distinct advantage of the GHNN based model is that it can be reasonably responsive to 

changes in design variables as well as loading scenarios. It is a first-ever design-based 

dynamic hysteretic model for steel beam-column connections. 

 Since there has been no general hysteretic model for structural components or 

materials within a phenomenological-based framework, the development of the new NN 

based cyclic material model is expected to lead to significant applications to many 

practical problems in earthquake engineering. Even with the conventional NN based 

material model, difficulties have been encountered when they are expected to learn 

complex cyclic material behavior under load reversing conditions. Therefore, the first 

objective in this report is development of a new NN based cyclic material model and its 

application to steel beam-column connections. The new NN based connection models 
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shows viable and promising performance in representing complex cyclic behavior of 

connections even in earthquake type loading. However, experimental data are not always 

available, for example, in the form of rotational cyclic behavior of connections. In order 

to facilitate the use of the NN based connection model, a new self-learning simulation 

framework is developed for obtaining the NN based connection model directly from large 

or small-scale structural tests. The framework is developed in conjunction with three-

dimensional finite element analysis with geometrical nonlinearity. Moreover, the 

significant impact of the proposed GHNN based model is that the optimal seismic 

performance objective of structures can be obtained since the model includes a set of 

design variables for each connection type and the model can be reasonably responsive to 

the variation of design variables and loading scenarios. There have been many 

experimental investigations in the earthquake engineering community, but these were 

mainly limited to understanding yield mechanisms and failure modes of new designs. 

There has been no systematic approach in connecting experimental data to computational 

modeling processes. Significance of the research in this report is establishments of the 

strong connections between experimental and computational research through the self-

learning simulation framework and opening-up of potential applications of the NN based 

connection model for practical design purposes. 

 

1.4 Organization of the Report  

This report is presented in 7 Chapters. In Chapter 1, current problems and limitations in 

modeling of the cyclic behavior of beam-column connections are explained and the 

benefits from using an information-based modeling approach are also discussed. It is 
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followed by primary objectives of the report and their significances. In the Chapter 2, 

features of the cyclic behavior of connections are explained based on the abundance of 

experimental observations. For each connection type, the yield mechanisms observed 

from experiments are described and the primary factors that influence the capacity of 

connections are discussed. This is followed by a series of literature reviews on the 

modeling methods of cyclic behavior of connections ranging from phenomenological 

approach to three-dimensional finite element analysis approach. In particular, the 

component-based modeling approach incorporated with NN based cyclic material model 

is highlighted.  In Chapter 3, a novel NN based cyclic material model is proposed with a 

series of numerical examples from one-dimensional through multi-dimensional problems. 

In Chapter 4, the proposed model is applied to steel beam-column connections. For the 

purpose of the applications, a nonlinear finite element program using three-dimensional 

beam-column element with geometric nonlinearity is developed employing lumped 

inelasticity. A new simulation method of frame structures with NN based plastic hinges is 

proposed. In Chapter 5, a new self-learning simulation framework for determining the 

inelastic hysteretic model for connections from experiments are developed and then it is 

tested with a series of examples using both synthetic and experimental data. Towards 

extensive applications of the proposed model to daily practical applications, a generalized 

hybrid NN (GHNN) based inelastic hysteretic model for connections is proposed in 

Chapter 6. The generalized features of the model are demonstrated with extended-end-

plate and top-and-seat-angle-with-double-web-angle connections under cyclic and 

earthquake loading. Finally, conclusions are made and recommended future research is 

introduced in Chapter 7.  
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CHAPTER 2 MODELING OF INELASTIC CYCLIC 
BEHAVIOR OF STEEL BEAM-COLUMN 
CONNECTIONS 

2.1 Introduction 

In this chapter, cyclic behavior of steel beam-column connections is discussed focusing 

on their seismic performances and analytical modeling approaches. Accurate modeling of 

the cyclic behavior of connections is very important in evaluation of seismic 

performances and design of steel moment-frame buildings. After the 1994 Northridge 

earthquake, many experiments on steel beam-column connections were carried out to 

improve the seismic performance of fully welded beam-column connections and to 

suggest new connection types with improved seismic resistance. Observations from the 

past experiments on various connection types, their cyclic behavior, and yielding/failure 

mechanisms will be briefly reviewed in the following section. 

 

2.2 Cyclic Behavior of Steel Beam-Column Connections 

Since the 1994 Northridge earthquake, extensive research on seismic response and 

performance of various connection types has been carried out. The large variations in the 

load-carrying capacity observed in the experiments are likely due to many different yield 

mechanisms and failure modes. As such, large variations in strength and ductility can 

lead to difficulties in modeling of the cyclic behavior. Particularly, plastic engagement of 

connecting components significantly affects the cyclic behavior of connections. 

Therefore, distinguishing between energy-dissipative and non-energy-dissipative 
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components is important in designing connections aimed at earlier development of 

ductile mechanisms than brittle mechanisms (Plumier 1994). It is also important to give 

sufficient over-strength factor to the components that are likely to show brittle failure 

mechanisms. The non-energy-dissipative mechanisms for each connection type under 

cyclic loading conditions are summarized in Table 2.1.  

 In the case of welded-flange-bolted-web connections, the cyclic behavior is much 

more stable than the earlier bolted connections. Its stable cyclic behavior is illustrated in 

Figure 2.1. The stable energy dissipation is mostly provided by the inelastic deformations 

in the shear panel zones and in the welds between beam and column flanges. Their 

contributions to the total energy dissipation can be controlled by a supplementary column 

web plate. In the case of extended-end-plate connections, flexural deformations of the 

end plate and axial deformations of the bolts contribute to the energy dissipation under 

cyclic loading. Particularly, it has been observed in the past experiments that the more the 

bolts contribute to the energy-dissipation, the more hysteretic pinching is amplified. As 

shown in Figure 2.2(a), the ductility is very low after the bolts have failed. If the end 

plate is stiffened, it can ensure yielding of the beam and lead to very good energy 

dissipation capacity as shown in Figure 2.2(c). Therefore, thickness of the end plate and 

the column flange and diameter of the bolts are very important design parameters for the 

extended-end-plate connection. In the case of top-and-seat-angle connections, flexural 

deformations of the column flange and the angles are primary sources of the energy 

dissipation under cyclic loading. As the thickness of the angles increases, the flexural 

deformation of the column flanges increases. In the case of bolted-shear-tab connections, 
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the cyclic behavior could be non-symmetric due to preloading effect of the gravity loads 

and contact between beam flange and column face as illustrated in Figure 2.3. 

 

Table 2.1 Various Connection Types and Their Brittle Failure Mechanisms under 
Cyclic Loading 

 

Number Connection Type Non-energy-dissipative 
mechanism Classification 

(1) Welded-flange-bolted-web 
connection 

a. Local buckling of 
column web 

b. Fracture of weld 
Pre-Northridge 

(2) 
Welded-flange-bolted-web 
connection with improved 

welding 

a. Local buckling of 
column web 

b. Fracture of weld 
Post-Northridge 

(3) 
Welded-flange-bolted-web 
connection with improved 

weld access hole 

a. Local buckling of 
column web 

b. Fracture of weld 
Post-Northridge 

(4) Extended-end-plate 
connection 

a. Fracture of bolts in 
tension Post-Northridge 

(5) Bolted-flange-plate 
connection 

a. Fracture of weld 
b. Fracture of bolts in 

shear 
Post-Northridge 

(6) T-stub connection a. Shear fracture of bolts 
b. Tensile fracture of bolts Post-Northridge 

(7) Double-flange-angle 
connection 

a. Fracture of bolts in 
shear Post-Northridge 

(8) Web-angle connection 
a. Fracture of weld 

b. Shear fracture of bolts 
c. Tensile fracture of bolts 

Post-Northridge 

(9) Reduced-beam-section 
connection 

a. Lateral torsional 
buckling 

b. Fracture of weld 
Post-Northridge 

(10) Composite-partially-
restrained connection ? Post-Northridge 

(11) Connection with friction and 
damping ? Post-Northridge 

(12) Connection with self-
centering capability ? Post-Northridge 

Note) Any premature local buckling of plates should be avoided for all connections 
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Figure 2.1 Moment-Rotation Cyclic Behavior of Welded-Flange-Bolted-Web 
Connection (FEMA-355D 2000) 
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Figure 2.2 Cyclic Behavior of Extended-End-Plate Connection (FEMA-355D 2000) 
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Figure 2.3 Moment-Rotation Curve for Bolted-Shear-Tab Connection (FEMA-355D 
2000) 

 

 In summary, because of the topological complexity of connections and a large 

number of possible yield mechanisms, the cyclic behavior can vary significantly even 

within the same connection type. Development sequences of the yield mechanisms can 

also affect the rotational capacity of connections because of the interaction between the 
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components. Mainly for this reason, there are difficulties in modeling of the cyclic 

behavior of the connections. 

 

2.3 Modeling Approaches of Cyclic Behavior of Steel Beam-Column 
Connections 

There are four different approaches to model the cyclic behavior of beam-column 

connections; 1) Phenomenological modeling; 2) Mechanical modeling; 3) Refined three-

dimensional finite element modeling and 4) Neural network (NN) based modeling 

approach. In this section, the existing modeling approaches are briefly reviewed and a 

neural network based modeling approach combined with mechanical model is introduced 

in more detail. 

 

2.3.1 Phenomenological Models 

The phenomenological models are mainly based on curve-fitting techniques whereby a 

simple mathematical expression reproduces the experimental data with some curve-fitting 

constants. The constants are calibrated by the experimental data. The advantage of the 

phenomenological model is that once the constants are determined, the moment-rotation 

relationship can be explicitly expressed and used in ordinary structural analysis for design 

purposes. There is wide-spectrum of phenomenological models with varying degrees of 

complexity. Some examples of these models are: Richard-Abbott model (Richard and 

Abbott 1975), the power model, the Chen-Lui exponential model (Lui and Chen 1986) 

and the bounding-line model (Albermani, et al. 1994).  
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 In order to trace the cyclic behavior of connections, the static monotonic moment-

rotation can be used following three types of methods; independent hardening method, 

kinematic hardening method and bounding surface method. The independent hardening 

method can not consider the deterioration of connection properties such as initial stiffness 

and the initial yield moment. In the case of bounding surface method, Masing rule is used 

to trace the reversals resulting from unloading and reloading by directly following a 

nonlinear curve. If a static monotonic curve is defined as follow.  

 cf (M, ) 0q =  (2-1) 

then the unloading and reloading curve can be assumed by the following equation.  

 * *M Mf , 0
2 2

æ ö- q- q ÷ç ÷=ç ÷ç ÷çè ø
 (2-2) 

Where (M*, θ*) are the point at which the load reversal occurs. The tangent stiffness 

corresponding to loading is expressed as follow. 

 ( )tan
dMK g M,
d

= = q
q

 (2-3) 

The tangent stiffness corresponding to unloading and reloading is expressed as follow. 

 * *

tan
dM M MK g ,
d 2 2

æ ö- q- q ÷ç ÷= = ç ÷ç ÷çq è ø
 (2-4) 

Numerous studies have also been conducted to predict the experimentally observed cyclic 

behavior of various beam-column connection types. Although the phenomenological 

models can be generally used for all kinds of connections under dynamic loadings, it can 

not consider stiffness and strength degradations and pinching in cyclic behaviors. It is 

noteworthy that there has not been a generally accepted phenomenological model for the 

complex cyclic behavior of all the steel beam-column connections. 
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2.3.1.1 Advanced Phenomenological Models 

There is a relatively simple phenomenological model that represents the moment-rotation 

relationship of semi-rigid connections (Bernuzzi, et al. 1996). The model is based on a 

bilinear representation of semi-cycle by introducing the four different stiffness values. 

This model was applied to a flush end-plate connection subjected to cyclic loadings.  

 In order to investigate the seismic responses of steel moment-frame buildings with 

connection failures, a smooth connection-fracture hysteresis model based on Bouc-Wen 

model was developed (Wang and Wen 2000). An asymmetric model is combined with a 

slip-lock element in serial mode to represent pinching and slip in cyclic behaviors of steel 

beam-column connections. Even though the modified Bouc-Wen model can reproduce 

any test result, many parameters relating to the shape of hysteresis before and after 

fractures should be determined prior to its application.  

 In 2000, a hysteretic connection element was proposed by Deng et al. (Deng, et al. 

2000). The stiffness and strength degradation and pinching of cyclic curves were 

expressed in terms of damage state variables. It was implemented in a computer program, 

DRAIN-3DX with piece-wise linear cyclic relationships following an automatic event 

definition algorithm. However, since the damage model is dependent on a particular 

loading history, more experiments on any specific connection type needs to be done for 

further applications.  

 In the following section, two most widely used non-pinching cyclic connection 

models are described. These models are used for the purpose of verifications of a 
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proposed model in this report. They are; Ramberg-Osgood model (Ang and Morris 1984) 

and Frye-Morris’ model (Frye and Morris 1975).  

 

2.3.1.2 Standardized Ramberg-Osgood Model 

The Ramberg-Osgood model was originally developed for modeling non-linear stress-

strain relationships (Ramberg and Osgood 1943). In 1984, it was standardized by Ang 

and Morris (Ang and Morris 1984) for its application in steel beam-column connections.  

The moment-rotation relationship is expressed as follow; 

 n 1

0
i

0 0

PM PM M1   ;  K
PM PM

-

0 0

é ùæ öq ê ú÷ç ÷= + =çê ú÷ç ÷÷çq qè øê úë û
 (2-5) 

where M0 and θ0 are the moment and rotation that define a crossing point A in Figure 2.4; 

P is a dimensionless parameter dependent on the connection type and geometry; n is a 

parameter defining the steepness of the curve. The parameter P is expressed as follows. 

 j
m a

j
j 1

P q
=

= Õ  (2-6) 

Where qj is value of the j-th size parameter; aj is a dimensionless exponent that indicates 

the effect of the j-th size parameter on the curve and m is the number of size parameters 

for a given connection type. P and n values are tabulated for each connection type in 

(Ang and Morris 1984). For its application in modeling the cyclic behavior of 

connections, the rotational tangent stiffness can be obtained by taking the derivative of 

equation (2-5). The tangent stiffness in unloading and reloading curve is illustrated in 

Figure 2.4. 
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Figure 2.4 Standardized Ramberg-Osgood Model for Connections 
 

2.3.1.3 Frye and Morris’ Polynomial Model 

In 1975, Frye and Morris proposed an empirical model whereby the rotation is expressed 

by an odd-power polynomial function of moment and other curve-fitting parameters 

(Frye and Morris 1975). They fitted curves to the available experimental results of 

connections subjected to monotonic loadings. 

 3 5
1 2 3C (PM) C (PM) C (PM)q= + +  (2-7) 

Where M and θ are the moment and rotation, respectively; C1, C2 and C3 are curve-fitting 

parameters; P is a standardized parameter which is a function of the important 

geometrical parameters such as connecting member size and plate thickness, etc. The 

parameter P is expressed as follows. 

 j
m a

j
j 1

P q
=

= Õ  (2-8) 
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Where qj is the value of the j-th size parameter; aj is dimensionless exponent that 

indicates the effect of the j-th size parameter on the curve and m is the number of size 

parameters for a given connection type. The standardized connection moment-rotation 

functions are tabulated in Table 2.2. Taking the derivative of equation (2-7) with respect 

to the rotation (θ), the tangent stiffness can be obtained as follow. 

 
tan 2 4

1 2 3

dM 1K
d C P 3C P(PM) 5C P(PM)

= =
q + +

 (2-9) 

In applying the polynomial model in cyclic moment-rotation curves, the rotational 

tangent stiffness is determined using the predictor moment for the next time step and the 

incremental moment as follow. 
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£ D ³
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 (2-10) 

Where Mn+1 is predictor moment for (n+1)-th step; ΔMn+1 is incremental moment at 

(n+1)-th step; Mi is the latest unloading or reloading moment along the cyclic curve.  

 The advantages of the two empirical models are that the models are standardized to 

fit into the experimental observation on all the connection types so they can be used to 

predict the rotational cyclic behavior once the geometrical and material properties of the 
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given connection type are known. However, as aforementioned, they can not consider the 

stiffness and strength degradation and the pinching phenomena frequently observed in the 

hysteretic behavior of beam-column connections. 

 

Table 2.2 Standardized Connection Moment-Rotation Functions 

Connection 
Type 

Curve-fitting 
Parameters 

Standardized 
Constant 

Maximum 
Deviation of 
Standardized 
Curve from 

Experimental 
Curve 

Number of 
Tests 

Double-web-
angle 

connection 

C1=3.66x10-4 
C2=1.15x10-6 
C3=4.57x10-8 

P=d-2.4·t-1.18·g0.15 6% 19 

Single-web-
angle 

connection 

C1=4.28x10-3 
C2=1.45x10-9 
C3=1.51x10-16 

P=d-2.4·t-1.18·g0.15 10% 8 

Header-plate 
connection 

C1=5.1x10-5 
C2=6.2x10-10 
C3=2.4x10-13 

P=t-1.6·g1.6·d-2.3·w0.5 4% 16 

Top-and-
seat-angle 
connection 

C1=8.46x10-4 
C2=1.01x10-4 
C3=1.24x10-8 

P=t-0.5·d-1.5·f-1.1·l-0.7 11% 55 

End-plate 
connection 

without 
column 

stiffeners 

C1=1.83x10-3 
C2=-1.04x10-4 
C3=4.57x10-8 

P=d-2.4·t-0.4·f1.1 3% 12 

End-plate 
connection 

with column 
stiffener 

C1=1.79x10-3 
C2=1.76x10-4 
C3=2.04x10-4 

P=d-2.4·t-0.6 6% 18 

T-stud 
connection 

C1=2.1x10-4 
C2=6.2x10-6 
C3=-7.6x10-9 

P=d-1.5·t-0.5·f-1.1·l-0.7 12% 17 
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2.3.2 Mechanical Models: Component-based Approach 

The mechanical models are also aimed at predicting the rotational cyclic behavior of 

connections by assemblages of rigid and deformable elements (spring elements). They 

are frequently referred to as component-based models in the literature. The advantage of 

the component-based modeling is that the cyclic behavior of the whole connections can 

be represented by the uni-axial cyclic behavior of simple deformable elements. 

 In 1994, De Stefano et al. proposed a mechanical model to simulate the behavior of 

the double-angle connection subjected to large amplitude cyclic loading (De Stefano, et 

al. 1994). They pointed out that the angle behavior is primarily dependent on the flexural 

response of the angle leg adjacent to column flange. Beam element with distributed 

plasticity approach was used with a kinematic hardening model for the material model. 

The model is illustrated in Figure 2.5. However, the model is for predicting the cyclic 

behavior of the double-angle connection only. 
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Figure 2.5 Mechanical Model for Double-angle Connection (De Stefano, et al. 1994) 
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 In 1992, a component-based model was proposed by Madas, et al. (Madas and 

Elnashai 1992). The model consists of a rigid parallelogram surrounding the panel zone 

and spring elements representing fastening elements such as angles, end plate and bolts as 

shown in Figure 2.6. In the calculation of the stiffness of each component C and D, the 

connection elements such as bolts and column flange in bending are assumed to be 

connected in serial mode. The stiffness of the spring element for the panel zone is 

calculated according to the formulation proposed by Krawinkler et al. (Krawinkler, et al. 

1971) and tri-linear cyclic model is applied as shown in Figure 2.6. The drawbacks of this 

model are that the stiffness and strength degradation and pinching phenomenon are not 

taken into account and the shear force is transferred to the panel zone only through 

flexural action of beams. 
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Figure 2.6 Mechanical Model and Cyclic Behavior of Components (Madas and 
Elnashai 1992) 

 

 In 2004, an advanced component-based model for cyclic behaviors of partially 

restrained composite joint was proposed by Rassati, et al. (Rassati, et al. 2004).  While it 
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has been proven to reproduce complex 3D connection behaviors, it is not suitable in 

practical applications because of enormous input and computation overhead. 

 In 2006, the cyclic behavior of the components was modeled by NN based material 

modeling approach in order to resolve the drawback of the original model (Yun, et al. 

2006a). For development of the NN based material model, a self-learning simulation 

methodology was applied and three past states of stress-strain pairs was used to train the 

NN model. Considering the potential of NN’s learning capability, it is very promising 

approach for modeling the cyclic behavior of beam-column connections. 

 

2.3.3 Three-Dimensional Finite Element Model 

Three-dimensional finite element model is the most accurate approach to predict the 

cyclic response of beam-column connections. Recently, many general-purpose nonlinear 

finite element analysis packages and advanced finite element mesh generation tools are 

routinely available, such as ABAQUS, ANSYS, I-DEAS and HYPERWORKS, etc. For 

detailed modeling of components of the connection, modeling techniques such as metal 

frictional contact, assembly torque, geometric and material nonlinearity are easily 

employed in complex three-dimensional finite element models. With such a detailed 

finite element model, realistic responses under cyclic loadings can be simulated by 

classical metal plasticity model with mixed hardening definitions such as kinematic and 

non-linear isotropic hardening model. A number of studies on three-dimensional finite 

element analysis of beam-column connections have been reported (Citipitioglu, et al. 

2002; Bursi and Jaspart 1998; Sherbourne and Bahaari 1996; Bahaari and Sherbourne 

1996; Sherbourne and Bahaari 1994). However, there are several drawbacks in the three-
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dimensional finite element models of connections subjected to cyclic loadings. While the 

approach can provide the most accurate prediction of the capacity of connections, the 

computational time and cost are enormous and there are still unresolved issues with 

respect to modeling of post-yield behavior such as local buckling, fracture and tearing of 

components.  

 Figure 2.7 illustrates results from a three-dimensional finite element analysis of a 

welded-flange-bolted-web connection (Yun, et al. 2006a). All the components including 

beam, column, shear tab, bolts and weld materials are modeled using three-dimensional 

solid elements to reproduce experimental results. According to the test results, top flange 

of the beam was torn out. The experimental observation could be inferred by the result 

from the three-dimensional finite element analysis as illustrated in Figure 2.7. 

 

 

(a) Top Beam Flange Torn Out (Stojadinovic 1998) (b) Contour of Von Mises Stress 

Figure 2.7 3D Finite Element Analysis of Welded-Flange-Bolted-Web Connection 
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 (a) 3D Finite Element Analysis Result (b) Experimental Result(Stojadinovic 1998) 

Figure 2.8 Comparison of Cyclic Behavior between 3D FE Analysis and Experiment 
 

A comparison of Figure 2.8 shows that the three-dimensional finite element analysis can 

reasonably predict the cyclic behavior of the test specimen until tearing of the beam 

flange occurs. However, as shown in Figure 2.8, the three-dimensional finite element 

analysis has difficulties in reproducing the post-limit behavior. 

 

2.4 Neural Network Based Modeling Approach 

Since neural network (NN) based material modeling methodology was first proposed by 

Ghaboussi et al. (Ghaboussi, et al. 1991), there have been other related studies on 

constitutive modeling of soil and concrete material through NN (Ghaboussi, et al. 1998a; 

Ghaboussi and Sidarta 1998b; Hashash, et al. 2003; Jung and Ghaboussi 2006). The main 

advantages of the NN based material models are that 1) the NN based material models 

can represent the material behavior properly if they are trained with comprehensive 
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training data and 2) they can represent any complex cyclic material behavior including 

the post-limit behavior such as local buckling, fracture and tearing of components. The 

training process of the NN material model is similar to validation with comprehensive 

experimental observations in conventional phenomenological material models. 

 However, there has been no research on the NN based cyclic material modeling for 

steel beam-column connections. Recently, a conventional NN based material constitutive 

model has been applied to model the cyclic behavior of steel beam-column connections 

with component-based approach (Yun, et al. 2006a). Since there is strong path-

dependency in the cyclic behavior of beam-column connections, three-point scheme 

representation is used in which three recent states of stresses and strains are included in 

the input of the NN. Generally, there are two forms in NN representation for modeling 

the path-dependent material behavior; total form, Equation (2-11) and incremental form, 

Equation (2-12). Either of the two forms can learn the path-dependent material behavior. 

The two NN based constitutive models for connecting components are expressed as 

follows. 

 { } { }( )NN
i NN i i 1 i 1 i 2 i 2 i 3 i 3ˆ , , , , , , : NN architectureσ σ ε ε σ ε σ ε σ− − − − − −=  (2-11) 

 { } { }( )NN
i NN i i 1 i 1 i 2 i 2 i 3 i 3ˆ , , , , , , : NN architectureσ σ ε ε σ ε σ ε σ− − − − − −Δ = Δ Δ  (2-12) 

The advantage of the NN based constitutive model is its capability of learning the post-

limit behavior such as local buckling and tearing of components, while classical metal 

plasticity model can not represent this post-limit behavior. 

 The component based model for beam-column connections is illustrated in Figure 

2.9 with exaggerated schematic deformations. The parallelogram with dimension db 

(depth of beam) by dc (depth of column) is modeled by four rigid elements. The corners 
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of the parallelogram are modeled as simple pin connections. The top/bottom flanges (or 

angles) and bolts connections are modeled as simple uni-axial spring elements. The 

spring elements at the center line of bolts are combined with rigid body elements in order 

to transfer flexural actions from beam to column. The beam and column joining to the 

connection are modeled with ordinary beam-column elements. A translational spring 

element is used to transfer the shear force from beam to column. 
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Figure 2.9 Mechanical Model with Neural Network based Constitutive Model (Yun, 
et al. 2006a) 

 

 Rotational stiffness of the shear panel spring is determined by the procedure 

proposed by Krawinkler (Krawinkler 1978). Using the principle of virtual work on the 

deformed configuration illustrated in Figure 2.10, the rotational stiffness of the shear 
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panel zone can be obtained. Translational spring stiffness as shown in Figure 2.10(b) can 

be derived from the rotational spring stiffness following the procedure below. 

 

( ) ( )

2
int s R

b
ext b,r b,l col,t col,b int ext

W M K
dW M M V V   ;   W W
2

= γ = γ

= + γ − + γ =
 (2-13)

From equilibrium conditions in the deformed configuration in Figure 2.10(a), the shear 

demand can be obtained as follows. 

 
b,l b,r col,t col,b

b

M M V V
V

d 2
+ +⎛ ⎞ ⎛ ⎞

= −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 (2-14)

From the third equation of (2-13) and (2-14), the rotational spring of shear panel can be 

expressed as follows. 

 
R b

VK d ⎛ ⎞
= ⎜ ⎟γ⎝ ⎠

 (2-15)

In order for the work done by the given action to remain invariant, the following equality 

must be satisfied. 

 ( )22 2
R T diag diag T

1 1 1K K L L ' K
2 2 2

γ = − = Δ  (2-16)

Where Ldiag is the diagonal length of shear panel zone in original configuration and L’diag 

is the diagonal length of the shear panel zone in a deformed configuration.  
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(a) Deformed configuration of shear panel zone     (b) Modeling of shear panel zone 

Figure 2.10 Deformed Configuration and Idealization of Shear Panel Zone Stiffness 
 

By substituting Equation (2-15) into Equation (2-16) and using the relationship Vy = 

0.55Fydctc and γy=Fy/√3G, the initial stiffness of the translational spring can be obtained 

as follows. Then effective area of the translational spring for the shear panel zone is 

obtained using the equation (2-17). 

 
( )

2
2y b c c 2 2 2

T y b c b c y b2
y

0.55F d d t
K    where  d d d d d

3G
= Δ = + − + − γ

Δ
 (2-17)

where Fy is yield stress of steel; db depth of beam; dc depth of column; tc thickness of 

shear panel; G shear modulus of steel; Δy deformation of the spring at yielding point. 

Finally, the deformation of each component is defined by three variables: rotation θe=θ-θs, 

axial deformation, u and vertical deformation, v. Therefore, the total axial force P and the 

moment M transmitted by n components (except shear panel spring) and the moment Mcf 

at the column face are expressed in terms of the stresses determined by the NN based 

material constitutive model.  

 n n
NN eff NN eff s
i i i i i

i 1 i 1

dP(t) (t)A ,   M(t)= (t)A z V(t)
2= =

= σ σ −∑ ∑  (2-18)
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 n NN effs b
cf i i i col,t col,b

i 1

d dM (t) V(t) (t)A z (V V )
2 2=

= − σ + +∑  (2-19)

where n is the number of components; σi
NN stress of i-th component; t time step; Ai

eff 

effective area of i-th component; zi distance from neutral axis to i-th component; ds 

distance from column face to center line of bolts; V(t) shear force transferred to column; 

db depth of beam and Vcol,t and Vcol,b column shear forces in the column above and below 

the connection. 

 The flexibility and the learning capability of the NN based material models are the 

unique advantage of the proposed model in learning the complex force-displacement 

relationship of the components due to buckling, frictional slip, fracture, slacking of 

fastened bolts as well as yielding of materials. The nonlinear force-displacement 

relationship which might include fractures of the corresponding components can be 

obtained through the NN based hysteretic model in conjunction with the self-learning 

simulation. 

  

2.5 Recommendations to Improve Accuracy and Practicality of 
Connection Model 

Through the phenomenological and mechanical modeling approaches, some of the 

experimental observations on beam-column connections could have been well 

reproduced in numerical simulations. However, the key point is that there is no generally 

accepted rule or model for the cyclic behavior of beam-column connections because the 

cyclic behavior is highly dependent on loading scenario, connection types, construction 

or manufacturing quality as well as complex hierarchical yield mechanisms between 

components. Even though there are standardized empirical models starting from 
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geometrical and material properties, their uses are mostly limited to monotonic loading 

cases and they are constructed from limited number of experimental cases. Therefore, 

there has been strong need for a practical, accurate and viable dynamic hysteretic model 

for components that significantly affect the response of structural systems such as beam-

column connections. 

 In this report, the NN based modeling approach has been adopted to improve the 

accuracy in prediction of the cyclic behavior of connections and the practicality of the 

model in design point of view. The NN has a remarkable capability to extract information 

from complicated or imprecise data such as cyclic behavior of structures from 

experiments. Although the earlier versions of the NN material models were effective in 

capturing the multi-axial material behavior, not only did they have limitations in learning 

cyclic behavior of materials but also they were only tested under cyclic uni-axial state of 

stress.  
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CHAPTER 3 NOVEL NEURAL NETWORK BASED 
INELASTIC HYSTERETIC MATERIAL MODEL 

3.1 Introduction 

Even with the great advances made in material modeling and computational simulation,   

inelastic analysis of materials and structural components remain challenging, especially 

under cyclic loading. In classical plasticity models, the cyclic behavior and Bauschinger 

effect has been modeled through a combination of isotropic and kinematic hardening. In 

most of the hardening models, the shape of the yield surface is assumed to remain 

unchanged in spite of the fact that the actual material behavior is known to lead changes 

in the shape of the yield surface (Green and Naghdi 1965; Shiratori and Ikegami 1968).  

 Over the past several decades, numerous cyclic plasticity and visco-plasticity models 

have been proposed in order to describe the material behavior under cyclic loading 

conditions (Chaboche 1989; Lemaitre and Chaboche 1990; Bodner and Partom 1975; 

Ristinmaa 1999). Numerous inelastic hysteretic models have also been developed for 

applications in earthquake engineering to represent the behavior of structural components, 

such as base isolators, reinforced concrete or steel members and their connections (Iwan 

1966; Wen 1976). These models represent various phenomena, such as stiffness/strength 

degradation and pinching, under arbitrary cyclic loadings. Modeling and calibrating of 

the observed phenomenological behavior of structural components have been proven to 

be difficult. 

 Neural network (NN) based constitutive modeling methods, first proposed by 

Ghaboussi, et al. (Ghaboussi, et al. 1991; Ghaboussi and Sidarta 1997), offer an 

alternative method for modeling of the complex behavior of materials and structural 
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components. A unique advantage of NN based constitutive models is that they are trained 

to learn the material behavior directly from the stress-strain data that are generated from 

experiments. If the training data contain sufficient information, then the trained NN can 

learn the material behavior and function as a constitutive model in computational 

mechanics. Recognizing that generating sufficient training data from material 

experiments may not always be possible, Ghaboussi, et al. (Ghaboussi, et al. 1998a) 

proposed a new method for training the NN material model from the results of structural 

experiments. However, prediction of the complicated hysteretic behavior of materials 

with NN material models has remained a challenge.  A new method is proposed in this 

chapter for modeling of the cyclic behavior of materials and structural components. The 

effectiveness of the proposed method has been demonstrated through a series of examples 

with actual and numerically simulated experiments. 

 

3.2  Neural Networks in Material Modeling 

Multi-layered NN consists of artificial neurons that are arranged within layers.  The 

neurons in each layer are connected to all the neurons in the next layer with weighted 

connections. Input signals are propagated from the input layer, through the hidden layers 

to the output layer. Three simple operations are performed in each neuron: 1. weighted 

sum of the incoming signals are calculated; 2. output of the neuron is determined by 

passing the weighted sum through a nonlinear activation function (e.g. hyperbolic tangent 

function); and, 3. The output is sent to the neurons in the next layer.  Multi-layered NNs 

are first trained with training data that consist of target input and output pairs. The 

connection weights are adjusted during the training phase. Training of the NN is an 
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adaptive process in which the connection weights are adjusted so that NN produces target 

output in response to the input pattern from the training data set (Hertz, et al. 1991). A 

number of methods for training the NNs are available. In this report, a local adaptive 

learning scheme called RPROP (Resilient Back-propagation) algorithm is used 

(Riedmiller and Braun 1993). 

 When the input and output of the NN consist of stresses and strains, it can be trained 

to learn the material behavior, as first demonstrated by Ghaboussi et al. (Ghaboussi, et al. 

1991; Ghaboussi and Sidarta 1997).  A numerical implementation of the trained NN 

material model was suggested by Hashaah et al. (Hashash, et al. 2004).  The performance 

of the trained NN material model depends on the quality and quantity of the information 

on the material behavior in the training data. The most common form of the NN material 

model uses strains as inputs and stresses as outputs. However, the current state of strains 

is not sufficient to determine the state of stresses in most materials due the path 

dependence. In order to train the NN material models to learn the path dependence, 

several past states of stresses and strains are included as the inputs to the NN. 

 A new version of standard multi-layered feed forward NNs was proposed by 

Ghaboussi et al. (Ghaboussi, et al. 1997) and used in of modeling material behavior 

(Ghaboussi and Sidarta 1998b; Ghaboussi, et al. 1991; Zhang 1996; Lefik and Schrefler 

2003). As shown in Figure 3.1, several independent NN modules are nested. The first 

module of the NN, called the base module, is created first. Other modules, called history 

modules in material modeling, are added in hierarchical sequences. Each NN module is 

fully connected within itself and it constitutes a complete regular NN. The “nested” 
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feature refers to the way that the modules are connected. Each new module has only one 

way connections to the existing modules.  
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,,,

Two-point History Module  

Figure 3.1 Example of Nested Adaptive Neural Network for Material Model 

 

 The adaptive method allows the neurons in hidden layers to be automatically added 

to hidden layers during the training of the NN. Initially, the training of the NN is started 

with a small number of hidden neurons. The learning rate is monitored during the training 

and if the capacity of the current network is reached, new neurons are added to hidden 

layers. Immediate training after the addition of new neurons is limited to new connections 

only while the old connections are kept frozen. In this way, the new connections are 

adapted to learn the portion of the knowledge that has not been learned by the previous 

network.  

 In order to model the inelastic hysteretic behavior of materials by NNs, there have 

been two approaches. In the case of the first approach, current state of the material 

depends on the current and past histories of observable variables only (total stress/strain, 
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incremental stress/strain, etc.) (Ghaboussi and Sidarta 1998b; Ghaboussi, et al. 1991; 

Zhang 1996; Lefik and Schrefler 2003). In the second approach, the current state of the 

material depends on the current and/or the past histories of observable variables and a set 

of internal state variables (back stress and drag stress, etc.) (Furukawa and Yagawa 1998; 

Furukawa and Hoffman 2004). In the early application of the NN to a material 

constitutive modeling (Ghaboussi, et al. 1991; Zhang 1996), the first approach were 

mainly used. Recently, Furukawa, et al. proposed an accurate cyclic plasticity model 

using a NN material model (Furukawa and Hoffman 2004). In 1998, Furukawa, et al. also 

suggested an implicit constitutive modeling for visco-plasticity using NNs following the 

second approach (Furukawa and Yagawa 1998). They demonstrated a good learning 

capability of the NN based model if a variety of training data with different conditions 

are used.  

 In this report, inspired by the inner product-based NN model of piezoceramic 

actuators (Xuanju and Yonghong 2005), a novel NN based cyclic material model with an 

implicit evolutional representation of new internal variables has been developed in order 

to represent the complex inelastic hysteretic models of materials and structural 

components. There have been systematic developments in the field of electromagnetic 

hysteresis (Xuanju and Yonghong 2005; Cincotti, et al. 1998; Mayergoyz 1991; Tong, et 

al. 2005). Among them, Xuanju and Yonghong (Xuanju and Yonghong 2005) proposed a 

new input value in order to transform a multi-valued mapping to a single-valued mapping 

in hysteresis for the application to piezoceramic actuators. However, the mathematical 

proof on the single-valuedness shows a discrepancy in modeling the material behavior. 

Moreover, stresses and strains (or forces and displacements) in mechanics are in the form 
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of tensor or vector rather than scalar values. Therefore, in this chapter, further 

investigations on its applicability to hysteretic behaviors of materials and structural 

components are conducted. It is noteworthy that the hysteretic behavior in 

electromagnetic devices is fundamentally different than the hysteretic behavior of 

materials that have to obey conservation laws of mechanics. The objective of this chapter 

is to propose a new NN based model for inelastic hysteretic behavior of materials with 

new internal variables and validate its performance through a series of examples. 

 

3.3  Neural Network based Inelastic Hysteretic Material Model 

There are four modes of hysteresis in one-dimensional stress and strain relationship, as 

shown in Figure 3.2.  However, the mode II only is admissible in the behavior of 

materials. The other three hysteretic modes either violate the conservation laws of 

mechanics or stability conditions, or both. 
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(a) Model I      (b) Mode II 
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Figure 3.2 Modes of Hysteretic Behavior of Materials in Uni-axial Cases 
 

 It is worth noting that the plastic energy and the complementary strain energy 

inequalities in multi-dimensional problems are only applicable for the stress and strain 

tensors, while the individual engagement of components of stress and strain tensors may 

appear to violate these inequalities and appear to follow the modes I, II, or III. Mode II is 

the only hysteretic mode admissible for the material behavior in uni-axial or tensor-

valued cases. The following is a definition of the admissible hysteresis in mechanics of 

materials.  

 

Definition: Given ˆ : A Bσ →  and Bσ∈  over a closed stress cycle, the level set of σ̂  

with a value σ  is written by ( ){ }ˆ ˆI ( ) A :σ σ = ε∈ σ ε = σ . If the number of the level set is 

not less than 2, that is, [ ]ˆn I ( ) 2σ σ ≥ , the function σ̂  is said to describe a hysteresis loop. 

The closed stress cycle satisfies the stability and energy constraints, dσTdεe ≥ 0 and 

Td 0≤∫ ε σ . The opposite definition is also established by interchanging σ with ε. 
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Figure 3.3 Admissible hysteretic curve in mechanics and classification of path 
 

 According to the definition of hysteresis, one strain value is corresponding to 

multiple stresses. The one-to-many mapping can be claimed to be a major cause that 

prevents NNs from learning hysteretic behaviors. Rigorously speaking, it is not a 

mathematical functional relationship. The essential idea for a new NN based cyclic 

material model is to transform the one-to-many mapping to single-valued mapping. In 

order to accomplish the single-valuedness between input and output of the NN based 

model for the hysteresis, two internal variables are introduced. The internal variable can 

be chosen as phenomenological variables as long as they are suitable for explaining the 

experimental observations. It can be taken as either scalar or tensor values. Since the NNs 

deal with discrete data in an incremental setting, the internal variables are necessarily in 

terms of discrete values of stresses and strains. The following internal variables are 

introduced. 

 n n 1 n 1 ,n n 1 n ,n n 1 n      − − ε − σ −ξ = σ ε Δη = σ Δε Δη = ε Δσ  (3-1) 

The subscript n indicates n-th incremental step. The second internal variable is for the 

strain control form and the third internal variable for the stress control form. These 

internal variables are illustrated in Figure 3.4. 
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(a) Strain control form    (b) Stress control form   

Figure 3.4 Internal variables defined for NN based cyclic material model 
 

The internal variable ξn implies its previous state along the equilibrium path by its energy 

quantity. On the other hand, the internal variable Δηε,n or Δησ,n implies the direction for 

next time or load step along the equilibrium path. A rigorous proof for the single-

valuedness in the case of uni-axial material behavior of mechanical systems is given in 

the following lemma. 

 

Lemma: For the given uni-axial closed hysteresis in mechanics as defined in Figure 3.3, 

the following relations are total and one-to-one or many-to-one relations, 3f : R R→ , 

between domain and codomain. 

 ( ){ }n n ,n n 1 1 n 2 2 1 1 ,n 2 2 1 n 2, , : A B A B ,A C A C ,B Bε εσ = σ ξ Δη ε ≤ ξ ≤ ≤ Δη ≤ ≤ ε ≤

( ){ }n n ,n n 1 1 n 2 2 1 1 ,n 2 2 1 n 2, , : A B A B ,B D B D ,A Aσ σε = ε ξ Δη σ ≤ ξ ≤ ≤ Δη ≤ ≤ σ ≤

 

(3-2a, 
b) 

where ξn, Δηε,n and Δησ,n are defined in equation (3-1); 1 n 2A A≤ σ ≤ , 1 n 2B B≤ ε ≤ , 

1 n 2C C≤ Δε ≤ and 1 n 2D D≤ Δσ ≤ ; and n is n-th time step. 
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Proof: 

 In order to show that the relations in Equation (3-2a, b) are single-valued functional 

mappings from domain in R3 to codomain in R, the closed hysteresis is subdivided into 

six paths as in Figure 3.3. The signs of the independent variable in the six paths shown in 

Figure 3.3 are given in tables 1 and 2 for the strain and stress controlled cases. The one-

to-one or many-to-one relationship from domain space ( ), ,εξ Δη ε  to codomain space ( )σ  

can be easily inferred from these tables.  

 

Table 3.1 Combinations of signs of input variables for strain control form 

 ξ  εΔη  ε  σ  
Path 1 + + + + 
Path 2 + – + + 
Path 3 – + + – 
Path 4 + + – – 
Path 5 + – – – 
Path 6 – + – 

→ 

+ 
 

Table 3.2 Combinations of signs of input variables for stress control form 

 ξ  σΔη  σ  ε  
Path 1 + + + + 
Path 2 + – + + 
Path 3 – – – + 
Path 4 + + – – 
Path 5 + – – – 
Path 6 – – + 

→ 

– 
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(a) Strain control form    (b) Stress control form 

Figure 3.5 Classification of domain in strain control form and stress control form 
 

Remarks:  

 The proof given in this Chapter is acceptable only for uni-axial material behavior. 

Even though numerical experiments with the internal variables from tensors, that is, 

T T
n n 1 n 1 ,n n 1 n   − − ε −ξ = Δη = Δσ ε σ ε  are shown to be valid, the rigorous proof with tensors still 

remains unresolved. In this report, the internal variables constructed by tensors are not 

used. 

  

 Therefore, a new implicit stress-strain relation is created with the new internal 

variables for the uni-axial hysteretic behavior of materials. The single-valued attribute of 

this implicit relation makes it suitable for the NN constitutive models; expressed in the 

following equation and illustrated in Figure 3.7. 

 { } { }( )n NN n n 1 n 1 ,n ,nˆ , , , , : NN architecture− − ε εσ = σ ε ε σ ξ Δη  or 

{ } { }( )n NN n n 1 n 1 ,n ,nˆ , , , , : NN architecture− − σ σε = ε σ σ ε ξ Δη  
(3-3a, b) 
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In this equation σ = stress; ε = strain and 5
NN NNˆˆ and : R Rσ ε → are functional mappings 

to be established through NNs. The first equation represents the strain controlled NN and 

the second equation the stress controlled NN. The two internal variables in each case can 

be combined in the representation; ςε,n= ξn + Δηε,n = σn-1εn-1 + σn-1Δεn and ςσ,n= ξn + Δησ,n 

= εn-1σn-1 +εn-1Δσn. The information contained in the single internal variable (ςε,n or ςσ,n) 

or two internal variables appears (ξn and Δηε,n or Δησ,n) to be the same based on 

numerical experiments. According to numerical tests, using the combined single internal 

variable shows better training performance than using the two internal variables in the 

case of multi-dimensional problems whereby many inputs are presented to the NN.  

 When any softening behavior is included in hysteretic curves, the softening path both 

in the stress and strain control form can lead to one-to-many mapping depending on the 

hysteretic path. Figure 3.6(a) shows the same sign combination of input values in 

softening region of the stress control form as the one of path 2. Likewise, in the case of 

strain control form, the sign combination of path 1 is the same as the softening path. To 

overcome this possible problem, the stresses and strains from the previous step (σn-1, εn-1) 

are added as part of the input to the NN as shown in Equations (3-3a, b). According to 

numerical tests, it is also observed that the addition strengthens the representation of the 

path dependency. 
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(a) Softening region in stress control form (b) Softening region in strain control form 

Figure 3.6 Exception of the single-valued mapping in case of softening region under 
stress control form 

 

 The strain control form in Equation (3.3a) is chosen in this chapter. As was pointed 

out earlier, this form is more general and is it not limited to work-hardening materials; it 

can also represent the strain softening hysteretic behavior of materials. Moreover, this 

form is more suitable finite element applications.  
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Figure 3.7 Novel NN based cyclic material model; gray-colored neurons and 
connections indicates adaptively added nodes of NANN 

 



 44

 The proposed NN is not limited to representing the hysteretic behavior in terms of 

stresses and strains. It can also represent the cyclic behavior of samples in terms of force-

displacement relations. Both types of data have been used in verifying the proposed 

model. Data from both physical experiments and simulated experiments are used.  
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Figure 3.8 Testing of the trained NN material model in recurrent mode 
 

 The trained NN models are used in finite element analysis in recurrent mode, 

illustrated in Figure 3.8; the stresses predicted by the trained NN models are used as input 

values in the next step.  It is important to test the NN in recurrent form since they will be 

used in that mode. This tests the robustness of the trained NNs in the presence of the 

inherent stepwise errors. NNs in the examples presented in Chapter have been used in 

recurrent form. 
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3.4 Implementation of NN Material Models in Non-linear FE Analysis 

In a general nonlinear finite element formulation, the iterative solution schemes such as 

Newton-Raphson, modified Newton-Raphson, Quasi-Newton and Arc-length methods 

are frequently used to find convergent response points. In the iterative process, 

calculation of internal resisting forces in material or element level is the primary source 

of nonlinearities in the case of material nonlinear problems because the internal resisting 

forces are mostly dictated by the material constitutive law provided. Therefore, the 

unbalanced force comes from the difference between external loads and internal resisting 

forces as in equation (3-4). 

 (k) (k 1) T
t n n n n dv−Δ = − = −∑ ∫K U P I P B σ  (3-4) 

Where Kt indicates global tangent stiffness matrix; Pn total external loading vector at n-th 

load step; In
(k-1) internal resisting force vector at (k-1)-th iteration step in n-th load step 

and B strain-displacement matrix. The stress σ in equation (3-4) is updated at every 

iterative step. In conventional incremental material constitutive models, an infinitesimal 

strain increment dε is related to infinitesimal stress increment dσ through constitutive 

differential equations. Therefore, in order to calculate material responses, a numerical 

integration is needed in the form of either explicit or implicit integration scheme. Since 

the NN based material model directly predicts material responses in terms of stresses as 

shown in equation (3-5), it is advantageous numerically in that it does not need any 

numerical integration. As such, after solving the incremental equilibrium equation (3-4), 

the internal resisting force vector is calculated by passing input strains and internal 

variables through the NN during the calculation of the material responses as follow: 
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 (k 1) T (k) (k)
n NN n n 1 n 1 ,n ,nˆ ({ , , , , }:{NN architecture})dv−

− − ε ε= ε ε σ ξ Δη∑ ∫I B σ  (3-5) 

In nonlinear finite element analysis, the global tangent stiffness matrix is directly 

assembled from elemental stiffness matrices as shown in equation (3-6).  

 ep ep
NN,11 NN,1nnelem

T ep ep
t NN i NN

i 1 vi ep ep
NN,n1 NN,nn

D D
dv       

D D
=

⎛ ⎞
⎜ ⎟

= = ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∫K B D B D
K

M O M

L

 (3-6) 

Particularly, for an elasto-plastic material constitutive model, the elasto-plastic material 

stiffness matrix should be explicitly defined for use in FE codes. However, since the NN 

based material models directly predict material responses in terms of stresses or forces in 

material or element level without explicit material stiffness matrix, there have been 

difficulties in its numerical implementation into nonlinear finite element codes in which 

global tangent stiffness matrix needs to be explicitly computed. As alternative approaches, 

the conjugate gradient method was used with modified Newton-Raphson iterations in 

which global tangent stiffness matrix is formed by element-by-element computations of 

element tangent stiffness matrices via NN based material models (Zhang 1996). 

Otherwise, elements of material stiffness matrix were probed using small increments of 

stress and strain component (Wu 1991). The material tangent stiffness of a material 

model in general FE codes is a relationship between the rates of stress and strain as 

follow. 

 ep (d )
(d )

∂
=
∂

σD
ε

 (3-7) 

With a finite strain increment Δε which is Δε >> dε, the material tangent stiffness is not 

uniquely defined since it can be calculated at any sub-increment of size dε. Therefore, an 

algorithmic material tangent stiffness is widely used in numerical implementation of a 
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wide variety of nonlinear constitutive models (Simo and Taylor 1985). This is a 

consistent linearization of nonlinear incremental constitutive relations. 

 n 1
ep n 1 n 1 n n 1 n 1 n

n 1

( ) ,   where    and 
( )

+
+ + + +

+

∂ Δ
= Δ = Δ − Δ Δ = Δ − Δ
∂ Δ

σD σ σ σ ε ε ε
ε

 (3-8) 

Recently, an explicit formulation method of the algorithmic material tangent stiffness for 

NN based material models was proposed (Hashash, et al. 2004). In this report, the 

numerical implementation method has been employed to derive the material tangent 

stiffness matrix for the proposed NN model. The NN based algorithmic (or consistent) 

tangent stiffness is expressed in terms of activation values from hidden layers, 

input/output values, connection weights as well as scale factors, as in equation (3-19). 

Since the new internal variables are expressed in terms of current stress and strain 

increment, the algorithmic material tangent stiffness for the proposed NN based material 

model can be derived without difficulties. The algorithmic tangent stiffness in 

conjunction with incremental nonlinear finite element analysis can be expressed as 

following. 

 n 1 n 1 n n 1
ep i i i i

n 1 n 1 n 1
j j j

( )+ + +

+ + +

∂Δ σ ∂ σ − σ ∂ σ
= = =
∂Δ ε ∂Δ ε ∂Δ ε

D  (3-9) 

Applying chain rules in equation (3-9) gives rise to the following relationship. 

 n 1 NNn 1 n 1 n 1 NN n 1 n 1 NN
ji i i i i

n 1 n 1 NN n 1 n 1 NN n 1 NN n 1
j i j i j j

++ + + + +

+ + + + + +

∂ ε∂ σ ∂ σ ∂ σ ∂ σ ∂ σ
= =

∂Δ ε ∂ σ ∂Δ ε ∂ σ ∂ ε ∂Δ ε
 (3-10) 

Then each derivative of the right hand side of equation (3-10) can be expressed in terms 

of parameters of NNs. 

 n 1
i

in 1 NN
i

S
+

σ
+

∂ σ
=

∂ σ
 (3-11) 
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 n 1 NN n 1 n 1 n
j j j j

n 1 n 1 n 1
j j j j j j

( )1 1 1
S S S

+ + +

+ ε + ε + ε

∂ ε ∂ ε ∂ Δε + ε
= = =

∂Δ ε ∂Δ ε ∂Δ ε
 (3-12) 

 n 1 NN n 1 NN n 1 n 1NC NB
i i k l

n 1 NN n 1 n 1 n 1 NN
k 1 l 1j k l j

C B
C B

+ + + +

+ + + +
= =

⎧ ⎫⎛ ⎞∂ σ ∂ σ ∂ ∂⎪ ⎪= ⎜ ⎟⎨ ⎬⎜ ⎟∂ ε ∂ ∂ ∂ ε⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∑  (3-13) 

The derivative of the activation function tanh(f(x)) with respect to x is as following. 

 ( ) ( )( )2tanh f (x) f (x)1 tanh(x)
x x

∂ ∂
= −

∂ ∂
 (3-14) 

Then the last derivative on the right hand side of the equation (3-13) can be expressed as 

follows; 

 

( ){ }
s m m

B n 1 NN BSV n
lk k lk kn 1 2 k 1 k 1n 1l

ln 1 NN n 1 NN
j j

w w SV
B 1 B

−
ε +

+
= =+

+ +

⎧ ⎫⎛ ⎞∂ β ε +⎨ ⎬⎜ ⎟∂ ⎝ ⎠⎩ ⎭= −
∂ ε ∂ ε

∑ ∑
 (3-15) 

Since { } { }n n NN n NN n NN n NN n NN n NN n 1 NN; ; ; ; +
ε= ε σ ς = ε σ σ ⋅ εSV , the right hand side of equation 

(3-15) can be rewritten as following. 

 ( ){ } ( )
n 1 2n 1 B BSV n NNl

l lj lj jn 1 NN
j

B 1 B w w
+

+ ε
+

∂
= − β + σ

∂ ε
 (3-16) 

Similarly, the other two derivatives of equation (3-13) can be found as follows; 

 ( ){ }
n 1 2n 1 CBk

k kln 1
l

C 1 C w
B

+
+

+

∂
= − β

∂
 (3-17) 

 ( ){ }
n 1 NN 2n 1 NN Ci

i ikn 1
k

1 w
C

+
+ σ

+

∂ σ
= − σ β

∂
 (3-18) 

Then the algorithm tangent stiffness can be found as following. 
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( ){ }( )
( ){ } ( ){ } ( )

n 1
ep i
NN,ij n 1

j

NC 23 n 1 NN Ci
i ik

k 1j

NB 2 2n 1 CB n 1 B BSV n NN
k kl l lj lj j

l 1

D

S 1 w
S

1 C w 1 B w w

+

+

σ
+ σ

ε
=

+ + ε

=

∂Δ σ
= =
∂Δ ε

⎡β − σ β⎢⎣

⎤⎛ ⎞⎡ ⎤ ⎡ ⎤× − β − β + σ⎜ ⎟⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠⎦

∑

∑

 (3-19)

Where DNN,ij
ep indicates the algorithmic material tangent stiffness; β steepness parameter 

(1 or ½); Si
σ and Si

ε Scale factors input and output values, respectively; Ck activation 

values from the second hidden layer; Bl activation value from the first hidden layer; wij 

connection weight between neuron i and neuron j. Compared with the conventional 

nonlinear finite element analysis procedure with elasto-plastic material, the proposed NN 

based constitutive formulations do not need either yield surface or plastic potential that 

are required in numerical integrations within material packages. The NN based model has 

been implemented into a widely used general-purpose finite element code ABAQUS 

using its extended capability for user-defined materials. 

  

3.5 Numerical examples 

In order to investigate the performance of the proposed model, real physical experimental 

results as well as simulated cyclic testing results are used in either one-dimensional or 

multi-dimensional problems. Because of lack of experimental cases from which stress 

and strain tensor values at sufficient material points under plane stress condition can be 

obtained, training data are generated from a numerical simulation with a mathematical 

cyclic plasticity model in the numerical test with a multi-dimensional problem. Using the 

training data, the proposed model is trained and tested for its performance with FE 
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analysis. It is worth noting that reproductions of any existing material model through the 

proposed model are not final objective of this study. As aforementioned in the 

introduction, the proposed model can be developed from available structural testing 

results through auto-progressive training methodology (Ghaboussi, et al. 1998a). 

 

3.5.1 Behavior of Plain Concrete under Uni-Axial Cyclic Loading 

Experimental data from a cyclic testing on samples of plain concrete by AC2-9 Karsan 

and Jirsa (Karsan and Jirsa 1969) is employed to train the proposed NN based model. The 

NN used in training and testing has two hidden layers, each with 20 nodes. Training is 

performed up to 5000 epochs. Testing is performed in recurrent mode as explained earlier. 

The NN based model is as following.  

 { } { }( )n NN n n 1 n 1 ,n ,nˆ , , , , : 5 20 20 1− − ε εσ = σ ε ε σ ξ Δη − − −   (3-20)

The performance of the proposed model and its comparison with an analytical model is 

illustrated in Figure 3.9. The phenomenological material model by Palermo et al. 

(Palermo and Vecchio 2003) is also shown in the figure. The trained NN is able to 

reasonably represent the normalized stress-strain behavior. This trained NN is used to 

model a different experimental data by Sinha et al. (Sinha, et al. 1964) in order to explore 

its generalization capability.  
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Figure 3.9 Results of training the proposed models and its comparison with an 
analytical model 
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Figure 3.10 Trained NN tested on different test data 
 

As shown in Figure 3.10, the trained NN material model can reasonably predict the cyclic 

behavior of a novel set of testing data. Particularly, it is worth noting that the 

generalization of the proposed model can be achieved using comprehensive training data 

and functional approximation capability of the NN.  
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3.5.2 Modeling of Cyclic Behavior of Beam-Column Connections 

The purpose of this example is to verify the performance of the NN based cyclic material 

model in reproducing the cyclic behavior of beam-column connections from testing. As 

the experiment cases, three full-size beam-column connection tests conducted under the 

SAC testing program of Phase I are chosen (SAC 1995a; SAC 1995b; SAC 1999). The 

first connection was tested in 1995. It was a repaired one that consists of standard beam 

(W30x99), column (W13x176), beam haunch and stiffeners as shown in Figure 3.11. 

During the test, the connection experienced severe local buckling and yielding of beam 

flange outside haunch and replacement flange. The second connection was tested in 1995 

and it experienced beam top and bottom flange buckling, panel zone yielding and column 

bending and twisting and terminated with severe lateral torsional buckling at the face of 

haunch. The test of the third connection (bolted flange plate connection) was carried out 

in 1999. The key observations of the test were local flange and web buckling, ductile 

flange tearing, significant local buckling in compression flange and brittle fracture of the 

flange. 
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The trained NN based cyclic connection model for the first connection is expressed as 

follow;  

 { } { }( )n NN n n 1 n 1 ,n ,nM , ,M , , : 5 29 29 1− − θ θ= θ θ ξ Δη − − −M   (3-21)

The other trained NN based models for the second and third connections can also be 

expressed as equation (3-21) but with tip force and displacement instead of moment and 

rotation. The NN architectures used are {5-35-35-1} and {5-45-45-1} for the second and 

the third, respectively. The number of epochs in training the model was 20,000 for UTA 

1RB and SAC UIUC BFP 02. 

 The series of comparisons in Figure 3.11 demonstrate the performance of the NN 

based cyclic connection model in reproducing the complex cyclic behavior of 

connections from experiments. In case of SAC UIUC BFP 02, the model is reproducing 

the unstable post-limit behavior as well as the pinched hysteresis which are encountered 

in bolted connection types. In case of UTA-1RB, the hysteretic curve is non-symmetric 

but the NN based model is shown to be reproducing the behavior well. The slight error is 

mainly caused by the accumulated error in testing since the testing is carried out in 

recurrent mode considering its later use in nonlinear finite element code. However, the 

error is practically negligible. The distinct capability of the NN based cyclic connection 

model is that it can reproduce experimental observations including destabilizing effects 

such as buckling and tearing. Furthermore, it can be easily implemented in nonlinear 

finite element codes.  
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3.5.3 Cyclic Behavior in Non-Uniform Stress States 

Primary objective of this example is to validate the proposed model under a non-uniform 

stress state. To obtain the non-uniform stress state, a simulated cyclic testing is conducted 

with an exterior joint of a steel moment-frame building. The steel frame building is a 

three-story building which was designed as a part of SAC steel project as shown in 

Figure 3.12 (Gupta and Krawinkler 1999). The dimension of the building, sizes of the 

members and the material properties are shown in Figure 3.12. For the sake of simplicity, 

the beam-column connection is assumed to be fully rigid in the whole frame analysis.  

 The three-story building is modeled with 162 two-dimensional Bernoulli-Euler beam 

elements. One exterior joint is modeled by 176 two-dimensional plane stress elements. 

The models are illustrated in Figure 3.13. A commercial finite element code, ABAQUS 

was used for the numerical simulation. For the material nonlinearity, cyclic plasticity 

model with Von Mises yield surface and mixed hardening effects are used. The cyclic 

loading illustrated in Figure 3.14 is applied to the two exterior columns. The 

displacement histories along the three edges of the two-dimensional continuum model are 

calculated from the whole frame analysis. In order to apply the displacement boundary 

conditions to the continuum model, two-dimensional distributing coupling elements are 

used.  
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Figure 3.12 3-story building from SAC steel project; Global model for obtaining 
boundary displacements of beam-column finite element model 
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Figure 3.13 Frame Model for Global Analysis and 2D Continuum Model for 
Exterior Joint 
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Figure 3.14 Lateral Cyclic Loading 
 

3.5.3.1 Local Validation of the Proposed Model 

The training data are extracted from the simulated cyclic testing on two-dimensional solid 

model. The stress and strain tensors of {σ11, σ22, σ12} and {ε11, ε22, ε12} at every gauss 

point of the solid model are extracted to construct input and target patterns for training 

the proposed model. The NN based model is expressed as follow. 

 { }
{ }(
{ })

n 1 n 1 n 1
11 22 12

n 1 n 1 n 1 n n n n n n n 1 n 1 n 1
NN 11 22 12 11 22 12 11 22 12 ,11 ,22 ,12

; ;

ˆ ; ; ; ; ; ; ; ; ; ; ;

         : 12-27-27-3

+ + +

+ + + + + +
ε ε ε

σ σ σ =

σ ε ε ε ε ε ε σ σ σ ς ς ς  (3-22) 

Total number of input pattern is 73,528 and the number of sampling time points are the 

same as the number of load increments of simulated cyclic testing which is 107 

increments. The number of total epochs is 20,000 for training the NN model. The training 

process is minimization of the average error function expressed as following; 

 [ ] ( )iN N 2

i i
1 i 1

1E O
2N

μ
μ μ

μ= =μ

= ς −∑∑w   (3-23a, b)

where Nμ indicates the total number of input patterns; Ni the number of output nodes; ς 

the target values; O the neural network prediction and w is the connection weight vector. 
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The average error indicated by a solid line in Figure 3.15 was calculated during the 

training course. It gradually decreases during the training. It means that the proposed 

model in equation (3-22) is reliably learning cyclic behaviors of the material under the 

highly non-uniform stress state. The average errors from testing at the three elements 

shown in Figure 3.15 are also gradually decreasing. 
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Figure 3.15 Performance evaluation of the training process 
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(a) S11 at element 20; integration point 1 
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(b) S22 at element 20; integration point 1 
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(c) S12 at element 20; integration point 1 

Figure 3.16 Local stress hysteretic curves and comparison of the proposed model 
with the training data 

 

 As shown Figure 3.16, comparisons of three stress components for the simulated 

cyclic testing and the proposed NN model shows that the proposed model can reasonably 

reproduce cyclic material responses under the non-uniform stress state. Apparently, the 

proposed model has a learning capability of the local hysteretic behavior of materials by 

the training. Because the model experiences a large bending action from the beam section, 

the stress component σ11 (S11); the horizontal component in the global coordinate system, 

is more uniform over the model than the other stress components. The range of the 

component σ11 is -489 (MPa) ~ +497.2 (MPa). On the contrary, the stress component σ22 

(S22) shows a peculiarity in stress levels at the geometrical discontinuity as shown in 

Figure 3.21 (a). The range of the stress component σ22 (S22) is -398.5 (MPa) ~ +389.2 

(MPa) and the range of the shear stress σ12 (S12) is -198.6 (MPa) ~ +193.9 (MPa). 

According to comparisons between the NN predictions and responses from the reference 
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model at other material points, the stress component σ11 (S11) was always most accurate 

among all the components.  

 

3.5.3.2 Global Validation of the Proposed Model 

In this example, the trained NN based cyclic material model is tested as a substitute for a 

mathematical plasticity model with implementation of user-defined material routine in a 

commercial finite element code, ABAQUS. The finite element analysis with the trained 

NN based cyclic material model is called as ‘forward analyses. The results from the 

forward analysis with the proposed model are compared with a mathematical metal cyclic 

plasticity model by Lemaitre and Chaboche (Lemaitre and Chaboche 1990). Finally, time 

series of sectional forces on the beam section are compared with the results from the 

mathematical model to validate the overall performance of the proposed cyclic material 

model. According to the simulated cyclic testing, large amounts of energy are dissipated 

under the action of axial forces at the beam section. As shown in Figure 3.17, Figure 3.18 

and Figure 3.19, the proposed model is reasonably predicting the global response of the 

numerical model.  
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Figure 3.17 Time history of axial force at beam section 
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Figure 3.18 Time history of shear force at beam section 
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Figure 3.19 Time history of moment at beam section 
 

 The discrepancy in the last cycle can be caused by various reasons such as prediction 

errors of the proposed model in interpolative or extrapolative operations due to use of 

different incremental size, their accumulation through the loading scenario, 

approximately converged solution in nonlinear finite element analysis and secondary 

effects of the errors on coupling between each stress component due to geometric 

nonlinearity. These comparisons are proving that the proposed model trained in a 

material level is reproducing the equilibrium path in a structural level of the numerical 

model under a cyclic loading with acceptable accuracy. It is worth noting the fact that the 

proposed model can guarantee the reasonable learning capability even in multi-

dimensional cases such as a continuum model. As such, the limitations of existing 

mathematical material models under cyclic loadings in terms of deterministic hardening 

model and assumption on invariant yield surface shape can be overcome by use of the 

proposed model. 
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(a) Mathematical cyclic plasticity model   (b) NN based cyclic material model 

Figure 3.20 Comparison of stress component σ11 between cyclic plasticity model and 
the proposed model at time step 33 

 

 

(a) Mathematical cyclic plasticity model   (b) NN based cyclic material model 

Figure 3.21 Comparison of stress component σ22 between cyclic plasticity model and 
the proposed model at time step 33 
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(a) Mathematical cyclic plasticity model  (b) NN based cyclic material model 

Figure 3.22 Comparison of stress component σ12 between cyclic plasticity model and 
the proposed model at time step 33 

 

 From Figure 3.20 through Figure 3.22, a series of contours of stress components; σ11 

σ22 and σ12 obtained from the proposed model are illustrated with those from the 

mathematical model (Lemaitre and Chaboche 1990) at time step 33. The contours show 

distinctive evidence on the overall performance of the proposed model under cyclic 

loading.  

 

3.6 Conclusions 

In this report, a novel NN based cyclic material model is proposed by introducing new 

internal variables to learn any hysteretic behavior of materials or structural components 

under cyclic loadings. The key role of the new internal variables is to provide a necessary 
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condition for establishing a reasonable functional relationship between input and output 

values, which is one-to-one or many-to-one mapping.  

 First, admissible hysteretic curves in mechanics are discussed based on stability and 

energy constraints. Second, considering the admissible hysteretic curve, a mathematical 

proof on the establishment of the functional relationship is provided for both stress and 

strain control form. Third, following the new internal variables for the cyclic material 

model, a novel NN representation is proposed. The proposed model is the first ever cyclic 

material model which is based on energy description different from conventional 

phenomenological hardening-based plasticity model. In order to test the proposed model, 

the nested adaptive NN is used for the adaptive node creation functionality. For 

numerical examples, the algorithmic material tangent stiffness matrix is derived for the 

proposed model and implemented into a user-defined material module in a widely used 

commercial finite element code, ABAQUS. According to a series of numerical testing, 

the proposed model shows phenomenal performance in learning any cyclic behavior of 

uni-axial plain concrete and metal in one dimensional form. Moreover, the extension of 

the proposed model into multi-dimensional problems is shown to be reasonable through a 

2-D beam-column connection problem. 

 As aforementioned, the conventional mathematical cyclic plasticity models, to a 

certain extent, include limitations in their deterministic descriptions based on hardening 

behavior and pitfalls in crude assumption of invariant yield surface shape. Through 

combining the proposed model with high fidelity of learning capability of NNs, the 

proposed model is expected to overcome the current limitation of mathematical plasticity 
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models and open significant applications in many engineering fields such as earthquake 

engineering. 
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CHAPTER 4 NONLINEAR FRAME ANALYSIS WITH 
NEURAL NETWORK BASED INELASTIC 
HYSTERETIC CONNECTION MODEL 

4.1  Introduction 

In capacity design concept, beam-hinging mechanism plays a critical role in the seismic 

performance of steel moment-frame buildings. Therefore, current building codes such as 

AISC-LRFD code, British Standards and Eurocode 3 require that nonlinear behavior of 

beam-column connections be characterized in the design process. Since the 1994 

Northridge earthquake, many alternatives for seismically resistant connection designs had 

been researched tremendously. Thus, it resulted in more challenges in modeling the 

nonlinear behavior of the connections. According to the past experimental observations, 

there are wide variations in load-carrying capacity with different types of connections.  

 There are several approaches in incorporating nonlinear behavior of connections 

with finite element models. One common approach is to use fixity factors or rigidity 

index in order to modify the conventional stiffness matrices of beam-column element 

with full fixity at both ends (Ang and Morris 1984; Dhillon and Abdelmajid 1990). In 

addition to the linear analysis approach, large displacement analysis approach to 

investigate behaviors of frames with semi-rigid connections was also researched both 

under static and dynamic loading conditions (Goto and Chen 1987; Chan and Ho 1994). 

Although only moment-rotation relation is of practical interest, in general, connections 

are subjected to combined axial forces and moments. Therefore, formal stress-resultant 

plasticity formulation for beams and columns has been researched in various applications 

in steel, reinforced concrete and concrete-filled steel tubes since 1970’s (Orbison, et al. 
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1982; Powell and Chen 1986; Takizawa and Aoyama 1976; Hajjar and Gourley 1997; 

Hajjar, et al. 1997; El-Tawil and Deierlein 1998). Although the stress-resultant plasticity 

formulation is accurate and computationally efficient, it is not applicable when localized 

destabilizing effects such as local buckling and tearing of components can be not 

neglected. Those complex responses are frequently observed in steel beam-column 

connections. As opposed to the stress-resultant plasticity formulation, there is also stress-

space formulation whereby inelastic effects are explicitly modeled by uni-axial stress-

strain constitutive relationship and the behavior is monitored at discrete points in cross 

section (Izzuddin and Elnashai 1989). However, the fiber-based modeling approach has a 

restriction that plane-sections should remain plane after deformations and combined 

effect with inelastic shear deformation can not be considered since inelastic effects are 

represented by only uni-axial deformations of the fiber elements.  

 In order to overcome the limitations on the stress-resultant plasticity model and the 

fiber-based analysis, this chapter introduces a fundamentally different model to represent 

nonlinear connection behavior whereby connection behavior is characterized by neural 

network (NN) based cyclic material model. This model is developed for earthquake 

analysis of steel moment-frame buildings with semi-rigid connections. The unique 

advantage of this model is that not only can it model inelastic cross-section deformations 

under combined axial forces and moments without following classical plasticity rules but 

also it can model any post-limit behavior of connections. In this chapter, geometric 

nonlinear three-dimensional beam-column element with NN based inelastic hysteretic 

connection models is formulated and its numerical implementation for nonlinear static 

and dynamic simulation is explained. Following co-rotational Updated Lagrangian 
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formulation, the reference configuration is updated in every iterative step and the tangent 

stiffness matrix is formulated as such. To obtain the converged responses along the 

equilibrium path, the incremental-iterative Newton-Raphson method is used. Instead of 

using the modified stiffness matrices to consider flexibility of the connections, a 

generalized constraint equation is applied both to static equilibrium equations and 

pseudo-static equilibrium equations for dynamic analysis. The generalized constraint 

equation can deal with both constraint conditions between degrees of freedom of the 

nodes with the same spatial coordinates and displacement boundary conditions.  

 In this chapter, following the co-rotational Updated Lagrangian formulation, the 

element tangent stiffness of the three-dimensional beam-column element is explicitly 

derived using the principle of virtual work and the stationary potential energy principle. It 

is followed by NN based inelastic hysteretic connection element proposed in this report. 

The numerical implementations for nonlinear static and dynamic analysis with the 

proposed connection element are also introduced. As numerical examples, nonlinear 

static and dynamic analysis of steel moment-frame buildings with the proposed elements 

are carried out and the proposed modeling method is verified with experimental data and 

three-dimensional finite element analysis results.  

 

4.2  Formulation of Geometrically Nonlinear 3D Beam-Column Element 

In order to derive a tangent stiffness matrix of the three-dimensional beam-column 

element, the following assumptions are made. 1) Material shows linear elastic behavior 

and element has prismatic section along its length. 2) There is no change in the shape of 

sections. 3) Displacements and rotations are assumed to be large and finite but the strain 
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is small. 4) Bi-moments of each element are not transformed to other components of 

moments even if it’s transformed from local coordinate system to global coordinate 

system. 5) Shear deformation is neglected following Euler-Bernoulli beam theory. 6) In-

between iterative steps, the relationship between incremental strains and stresses is 

assumed to be linear. 

 In the three-dimensional beam-column element, a displacement vector consists of 6 

components {u1,u2,u3,ω1,ω2,ω3} with a right-handed coordinate system as shown in 

Figure 4.1. u1, u2 and u3 are translational displacements in x, y and z direction, 

respectively and ω1, ω2 and ω3 are rotations in x, y and z direction, respectively.  
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Figure 4.1 Three-Dimensional Beam-Column Element 
 

If any arbitrary point P within a beam is assumed to move by (U1,U2,U3), then the 

translational movements of the point P can be represented in terms of the six components 

as follows.  

 1 1 2 3 3 2

2 2 1 3

3 3 1 2

U u x x
U u x
U u x

= +ω −ω
= −ω
= +ω

 (4-1) 

Then Green strain vector is expressed in a tensorial form as follow. 
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 ( )ij i, j j,i k,i k, j
1 U U U U
2

ε = + +  (4-2) 

According to the second assumption, three in-plane strain components ε22, ε33 and ε23 are 

assumed to be zero. Then the axial and shear strains are expressed as follows. ( · ),1 

means a derivative with respect to x1. 

 ( )2
11 1,1 1,1

1U U
2

ε = + ( ) ( )

( )

2 2
2,1 3,1

12 1,2 2,1 1,1 1,2

U U

1 1U U U U
2 2

⎡ ⎤+ +⎢ ⎥⎣ ⎦

ε = + + ( )
( )

2,1 2,2 3,1 3,2

13 1,3 3,1 1,1 1,3

U U U U

1 1U U U U
2 2

+ +

ε = + + ( )2,1 2,3 3,1 3,3U U U U+ +

 (4-3) 

In equation (4-3), the lined terms are neglected.  However, other nonlinear strains are all 

included in the following formulation. Substituting equation (4-1) into equation (4-3) 

gives rise to strain components in terms of six displacement components as follows.  

 ( ) ( ) ( )

( ) ( )

( ) ( )

2 2

11 1,1 2,1 3 3,1 2 2,1 1,1 3 3,1 1,1 2

12 2,1 3 1,1 3 3,1 1,1 2 1

13 3,1 2 1,1 2 2,1 1,1 3 1

22 33 23

1u x x u x u x
2

1 1u x u x
2 2
1 1u x u x
2 2

0

⎡ ⎤ε = +ω −ω + −ω + +ω
⎣ ⎦

⎡ ⎤ε = −ω −ω + +ω ω⎣ ⎦

⎡ ⎤ε = +ω +ω − −ω ω⎣ ⎦

ε = ε = ε =

 (4-4) 

For development of the beam-column element, twelve degrees of freedom are defined as 

shown in Figure 4.2 and the nodal displacement vector is defined as follow. 

 i i i i i i j j j j j j T
1 2 3 1 2 3 1 2 3 1 2 3=< u ,u ,u ,ω ,ω ,ω , u , u ,u ,ω ,ω ,ω >u  (4-5) 

Then the displacement field can be expressed in terms of the nodal displacements and 

shape functions as follows. The axial displacement and other displacement components 

are separately interpolated. Therefore, the axial displacement is assumed to vary linearly 
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along the length and other displacement components are interpolated using the third-

order shape functions. 

 i j
1 5 1 6 1

i i j j
2 1 2 2 3 3 2 4 3

i i j j
3 1 3 2 2 3 3 4 2

i j
1 1 1 3 1

u N u N u

u N u N N u N

u N u N N u N

N N

= +

= + ω + + ω

= − ω + − ω

ω = ω + ω

 (4-6) 

Following assumptions in the Euler-Bernoulli beam theory, the shear deformation is 

neglected. Then the relationship, 3 2,1ω u=  and 2 3,1ω u= - , are established. The shape 

functions used to define the displacement field are expressed as follows. The shape 

functions are expressed in the natural coordinate system. 

 2 3 2 3
1 2

2 3 2 3
3 4

5 6

N 1 3 2     N 2

N 3 2     N

1 1 1N     N     where   =
2 2 2

⎡ ⎤ ⎡ ⎤= − β + β = β− β +β⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤= β − β = −β +β⎣ ⎦ ⎣ ⎦
− ξ + ξ + ξ

= = β

L

L  (4-7) 

where L indicates the length of the element considered.  
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Figure 4.2 Degrees of freedom of Three Dimensional Beam-Column Element 
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In order to find the strain-displacement matrices, displacement fields in equation (4-6) are 

substituted into equations (4-4). Then the strain components in equation (4-4) are 

expressed as follows. The strains are expressed in engineering Green strains instead of 

tensorial Green strains. 

 
11 a 2 b2 3 b3 a

12 3 s s12

13 2 s s13

1x x
2

12 x
2

12 x
2

B B B B u

B B u

B B u

⎛ ⎞ε = − − +⎜ ⎟
⎝ ⎠
⎛ ⎞ε = − +⎜ ⎟
⎝ ⎠
⎛ ⎞ε = +⎜ ⎟
⎝ ⎠

l l l nl

l nl

l nl

 (4-8) 

The l  and nl mean linear and nonlinear components, respectively. In equation (4-8), aBnl  

relates the nonlinear portion of the axial strain to the nodal displacement vector. s12Bnl  and 

s13Bnl  relate the nonlinear portion of the shear strain to the nodal displacement vector. 

Then the nonlinear strains can be expressed in terms of the strain-displacement matrices 

in vector form as follows. 

 T
11 1 1

T T
12 2 1 2

T T
13 3 1 3

0 0
1 12 ;     0    and 
2 2

2 0

⎧ ⎫ ⎡ ⎤ε ϑ ϑ⎧ ⎫
⎪ ⎪ ⎢ ⎥ ⎪ ⎪= ε = = = ϑ ϑ = ϑ =⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥ε ϑ ϑ ϑ⎩ ⎭⎩ ⎭ ⎣ ⎦

ε AΘ AGu A Θ Gu

nl

nl nl

nl

 (4-9) 

In equation (4-9), 
T

1 2,1 3,10 U Uϑ = , 
T

2 3,20 0 Uϑ =  and 
T

3 2,30 U 0ϑ =  are 

the displacement gradients. G matrix consists of the first derivative of shape functions. 

The G matrix can be explicitly expressed in local coordinate system before transforming 

to natural coordinate system as follow.  

 
1

2

3 9x12

⎡ ⎤
⎢ ⎥= ⎢ ⎥
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G
G G

G
 (4-10)
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In order to get nonlinear parts of strain-displacement matrices, each component of 

nonlinear Green strain vector in equation (4-9) can be described as follows. Note that a 

relationship of T T
i j j i  (i,j=1,2,3)ϑ ϑ = ϑ ϑ  is satisfied. 

 

( )

T
11 1 1

T T T T
11 1 1 1 1 1 1 1 1 a

1
2
1
2

ε = ϑ ϑ

ε = ϑ ϑ +ϑ ϑ = ϑ ϑ = ϑ =G u B u& & && & &

nl

nl nl

 (4-14)

 ( ) ( )
( ) ( )

T T T T
12 2 1 1 2 2 1 1 2

T T T T
12 1 2 1 2 2 1 1 2 s12

1 1 2
2 2

ε = ϑ ϑ +ϑ ϑ = ϑ ϑ = ϑ ϑ

ε = ϑ ϑ +ϑ ϑ = ϑ +ϑ =G G u B u& && & &

nl

nl nl
 (4-15)

 ( ) ( )
( ) ( )

T T T T
13 3 1 1 3 3 1 1 3

T T T T
13 1 3 1 3 3 1 1 3 s13

1 1 2
2 2

ε = ϑ ϑ +ϑ ϑ = ϑ ϑ = ϑ ϑ

ε = ϑ ϑ +ϑ ϑ = ϑ +ϑ =G G u B u& && & &

nl

nl nl
 (4-16)

Therefore, the nonlinear strain-displacement vector can be expressed as follow.  
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T T
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T T
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 (4-17)

where aBnl  is 3x12 matrix. Note that a relationship T T
i j j iϑ ϑ = ϑ ϑ& &  is also satisfied. Because 

G is a constant matrix, its material rate is zero. It is worth noting that the nonlinear strain-

displacement matrices are functions of the displacement gradient which should be 

functions of time while the linear strain-displacement matrices are constant which can be 

calculated once in the initial configuration. Then the relation between the material rate of 

the Green strain and the material rate of the nodal displacement is used to derive the 

tangent stiffness matrix in the following section. Taking material derivatives of the 

strains in equation (4-8), the rate form can be expressed as follows. 

 ( )
( )
( )

11 a 2 b2 3 b3 a

12 3 s s12

13 2 s s13

x x

2 x

2 x

B B B B u

B B u

B B u

ε = − − +

ε = − +

ε = +

& &

& &

& &

l l l nl

l nl

l nl

 (4-18)

Then the incremental form of Green strain-displacement relation can be determined by 

multiplying both side of equation (4-18) by a small time increment Δt. By taking a 

variation of Green strain and displacement vector, the variational form can also be 

obtained as follow. 

 ( ) ( )   and   ε B B u ε B B uΔ = + Δ δ = + δl nl l nl

 (4-19)

Then Bl  can be expressed in local coordinate system as follow. In Lagrangian 

formulation, it is not affected by the deformation or motion of the element. 
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Where ( · )’ and ( · )” indicate a first and second derivative with respect to x1. Unlikely, 

Bnl  is a linear function of the element nodal displacement. 

 

4.2.1 Co-rotational Updated Lagrangian Finite Element Formulation 

In the Updated Lagrangian formulation, three configuration systems are defined as 

illustrated in Figure 4.3; 1) the initial configuration is C0, 2) the reference configuration 

C1 and 3) the current configuration C2. In the incremental Updated Lagrangian 

formulation, the reference configuration C1 is continuously updated during iteration. As 

illustrated in Figure 4.3, a position vector 2 x  in the current configuration C2 can be 

updated by 2 1 12= +x x u  and the total displacement 2u  referred to the initial 

configuration C0 is updated by 2 1 12= +u u u . The two superscripts on the left-side of a 

vector indicate the configuration at the beginning and the end of the incremental step. 

The subscript on the left-side of a vector indicates the configuration to which the vector 

refers. Particularly, in the co-rotational Updated Lagrangian formulation, any rigid body 

motion from C1 to C2 is excluded in order to obtain true values of incremental member 

forces. Then, the finite element equations are determined from a virtual work expression 

written at C2 referring to C1.   
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Figure 4.3 Definition of Original, Reference and Current Configuration for Updated 
Lagrangian Formulation 

 

4.2.2 Tangent Stiffness Matrix Formulation 

In order to obtain the geometric tangent stiffness of three dimensional beam-column 

element, an incremental equilibrium equation should be derived from a virtual work 

expression. First, a potential energy of a structural system is represented as follow. 

 
P ij ij i i i iV V S

1 dV u b dV u TdS
2

Π = ε σ − −∫ ∫ ∫  
(4-21)

where bi is component of a body force vector; Ti is a component of a traction vector. By 

taking a variation of the potential energy and applying the stationary potential energy 

principle, variation of the potential energy should be zero as follow. 

 
P ij ij i i i iV V S

dSdV u b dV u T dS 0
dS

⎡ ⎤
δΠ = δε σ − δ − δ =⎢ ⎥

⎣ ⎦
∫ ∫ ∫

 
(4-22)
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These integrals are all carried out in an initial configuration or in a reference 

configuration.  

 
T T T T T T

p V S
V

T T T T

V S
V

dSdV dV dS
dS

dSdV dV dS 0
dS

u B σ u N b u N T

u B σ N b N T

⎡ ⎤
δΠ = δ − δ −δ ⎢ ⎥

⎣ ⎦
⎛ ⎞⎡ ⎤

= δ − − =⎜ ⎟⎢ ⎥
⎣ ⎦⎝ ⎠

∫ ∫ ∫

∫ ∫ ∫
 

(4-23)

where T  is a surface traction vector in a deformed configuration.; dV and dS are 

infinitesimal volume and surface in the initial configuration C0; Tδu  a variation of nodal 

displacement vector; NT shape function matrix and BT a strain-displacement matrix. For 

any Tδu , the equation (4-23) should be satisfied. Then the equilibrium equation can be 

written at current configuration C2 as follow, noting that 2 2 2T p n=  (by Cauchy stress 

principle). 

 T 2 T 2 2 T 2 2 2
0 V S

V

dV d V d S 0B σ N b N p n− − =∫ ∫ ∫
 

(4-24)

In the Updated Lagrangian formulation, the finite element formulation is determined 

from the virtual work expression written at C2 referring to C1. Using the relationships 

2 2 1
1d V d VF=  and 2 2 2 2 2 2 T 1 1

1 1d S d Sp n p F F n=
% %

(the Nansen’s formula), the equilibrium 

equation can be written in the reference configuration C1 as follow. 

 
1 1

1

T 2 1 T 2 2 1 T 2 2 2 T 1 1
1 1 1 1V S

V

d V d V d S 0B σ N b F N p F F n− − =∫ ∫ ∫ %  
(4-25)

where 2
1F and 2

1F  are the Lagrangian and Eulerian deformation gradients, respectively. 

To obtain the finite element equation, the rate form of equation (4-25) is required. In 

order to find the tangent stiffness, the first term in equation (4-25) only is considered. 

Then the first term in equation (4-25) can be expressed as a sum of each component.  
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1 1 1 1

T 2 1 T 2 1 T 2 1 T 2 1
1 a 1 11 s12 1 12 a13 1 13

V V V V

d V d V d V d VB σ B B B= σ + τ + τ∫ ∫ ∫ ∫  (4-26)

The strain-displacement matrices can be expressed in terms of matrices in equation (4-18). 

 
a a 2 b2 3 b3 a ab a

s12 3 s s12 s12 s12

s13 2 s s13 s13 s13

x x

x

x

= − − + = +

= − + = +

= + = +

B B B B B B B

B B B B B

B B B B B

l l l nl l nl

l nl l nl

l nl l nl

 (4-27)

Taking the derivative of equation (4-26) with respect to time, the first term in the 

equation is expressed as follow. In the derivation, the relationship 

( ) ( )TT T T
a 1 1 1 1= ϑ = ϑB G G& && nl should be used. 

 
1 1

1 1 1

1 1 1

T 2 1 T 2 1
a 1 11 a 1 11

V V

T 1 2 T 2 1 1
ab a ab a 1 1 1 11 3

T 1 T 2 1 1 2
ab a ab a 1 1 11 3 1

d V d V

( ) EA( )d x d Ad x

( ) EA( )d x d Ad x
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⎡ ⎤
+ + + ϑ σ⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

= + + + σ⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫ ∫

∫ ∫ ∫

B B

B B B B u G I

B B B B G I G u

&&

&&

&

l nl l nl

l l A

l nl l nl

l l A

 (4-28)

where E indicates Young’s modulus and A indicates sectional area. G1 is in equation 

(4-11). I3 indicates a 3x3 identity matrix. Similarly, the derivative of the second and the 

third terms in equation (4-26) can be expressed as follows. In the derivation, the 

relationship ( ) ( ) ( )TT T T T T
s12 2 1 1 2 1 2 2 1= ϑ +ϑ = ϑ + ϑB G G G G& & & && nl  is used for a shear strain energy 

term with 122ε .  
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Likewise, ( ) ( ) ( )TT T T T T
s13 3 1 1 3 1 3 3 1= ϑ +ϑ = ϑ + ϑB G G G G& & & && nl  is used with 132ε . 
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 (4-30)

where G indicates shear modulus. Then the tangent stiffness matrix can be assorted as 

follow.  

 0 1 1 T 2 2 2
t t t t g

2 2 i 2 i 2 i 2 i 2 i 2 i 2 j 2 j 2 j 2 j 2 j 2 j T
1 2 3 1 2 3 1 2 3 1 2 3

( )

F , F , F , M , M , M , F , F , F , M , M , M

K K K K K u P

P

⎡ ⎤+ + + + =⎣ ⎦
=< >

&&

& & & & & & & & & & & & &
 (4-31)

Where 2 P&  and 2u&  indicate the rate of the nodal force and displacement vector in the 

current configuration C2, respectively. The each component of the tangent stiffness can 

be found as follow. 
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 (4-32)

In Newton-Raphson iteration, the reference configuration is updated at every step. In 

such a case, the displacement increment 12u becomes zero. Therefore, the 1
tK  and 2

tK  are 

vanished because they depend on Bnl which is determined from 12 1
i ju x∂ ∂ . Therefore, 

the incremental equilibrium equation can be expressed as follow. 

 0 2 2
t gK K u P⎡ ⎤+ =⎣ ⎦

&&  (4-33)
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Figure 4.4 Stress Components on a Cross Section of 3D Beam-Column Element 
 

Neglecting in-plane deformations ( 22 33 23 0ε = ε = ε = ), the stress resultants are calculated 

using stress components shown in Figure 4.4.  
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1 3 12 2 13 2 3 11 3 2 11
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F dA   F dA   F dA

M (x x )dA   M x dA   M x dA

= σ = τ = τ

= τ − τ = σ = − σ

∫ ∫ ∫
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 (4-34)

In equation (4-34), F1 indicates axial force and F2 and F3 are shear forces in x2 and x3 

direction, respectively. M2 and M3 are bending moments around x2 and x3 axis, 

respectively. 

 

4.2.3 Incremental Internal Resisting Force Vector 

In the Updated Lagrangian formulation, the geometry at reference configuration C1 

should be updated at each iteration step. Based on the updated geometry, the increment of 

the displacement vector from C1 to C2 with respect to global coordinate system (x1, x2, x3) 

should be transformed to the increment with respect to local coordinate (x’1,x’2,x’3) 

system referring to the reference configuration C1. 

 12 ' ' ' 12
1 2 3 1 2 3

12 12 12 12 12 12 12
1i 2i 3i 1i 2i 3i

12 12 12 12 12 12 T
1j 2 j 3 j 1j 2 j 3 j

'(x , x , x ) (x , x , x )

' u , u , u , , , ;

               u , u , u , , ,

u T u

u

Δ = Δ

Δ =< Δ Δ Δ Δ ω Δ ω Δ ω

Δ Δ Δ Δ ω Δ ω Δ ω >

 (4-35)

where T indicates a transformation matrix. The three configurations and displacement 

increments are illustrated in Figure 4.5. In order to calculate the incremental resisting 

force vector due to the increment of deformations, rigid body motions should be excluded 

from the increment of the displacement vector. The deformed shapes projected on two 

planes are illustrated with rigid body rotations in Figure 4.6. Then the pure rotations 

caused by bending moments can be expressed as follows.  
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Figure 4.5 Deformation States of 3D Beam-Column Element at Three Different 
Configurations 
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(a) Projected Deformation on x1-x2 plane (b) Projected Deformation on x1-x3 plane 

Figure 4.6 Decomposition of Rigid Body Motion from Incremental Displacement 
Vector 
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 (4-36) 

These rotations are referred to the reference configuration C1 as shown in Figure 4.6. Due 

to the large displacement, there is a coupling effect between axial, bending and torsional 

deformation called Bowing effect. Specifically, the change in axial length caused by 

bending and torsional deformations should be considered when the incremental internal 

resisting force vector is calculated. Therefore, the total axial deformation during an 

incremental step can be calculated as follow.  

 2 2 2 2 2 2 2 2 2
1j 1i 2j 2i 3j 3i

1 1 2 1 1 2 1 1 2
1j 1i 2j 2i 3j 3i b

= ( x x ) ( x x ) ( x x )

        ( x x ) ( x x ) ( x x ) d

D - + - + - -

- + - + - +

L
 (4-37) 

Where 2
kix (k 1,2,3)=  indicates coordinate values at i-node of the element in the current 

configuration C2; 1
kix (k 1,2,3)=  indicates coordinate values at j-node of the element in 

the reference configuration C1. The δb indicates the Bowing shortening in axial length 

which can be calculated from nonlinear terms of Green strain ε11 defined in equation 

(4-3). The section is assumed to be doubly symmetry with respect to two local two 

directions. The shortening can be expressed in terms of the increments of two bending 

rotations and torsional displacement as follow. 
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I22 and I33 are moment of inertia in two local directions of the element. And A indicates 

sectional area. Multiplying the incremental axial deformation and rotations in equation 

(4-36) and (4-38) by element tangent stiffness, the incremental internal resisting force can 

be calculated at the current configuration C2. The incremental internal resisting force 

vector is accumulated for the calculation of the residual loading. 

 

4.2.4 Equivalent Load Vector 

When any distributed loading is imposed on the three-dimensional beam-column element, 

the equivalent load vector is calculated from the virtual work expression for the external 

energy in equation (4-22). 

 / 2 1 3
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b 1 k k
k 1/ 2 1

/ 2 1 3
T T T T

t 1 k k k
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P N ρ N ρ J N ρ J

P N Φ N Φ N Φ J N Φ J

l

l

l

l

 (4-39)

Pb indicates an equivalent load vector from body force and Pt indicates an equivalent load 

vector from any surface traction. ρ  vector is <0,-1,0>T when gravity is defined in 

negative x2 direction. Φ  is a traction vector T
1 2 3, ,< F F F >  and J  is determinant of 
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Jacobian matrix which is constant 1dx / d / 2x= =J l  in this case and kW  is the weight 

factor for numerical integration. The N matrix can be extended as follow. 

 
1 2

1 2 3 4

1 2 3 4

N 0 0 0 0 0 N 0 0 0 0 0
0 N 0 0 0 N 0 N 0 0 0 N
0 0 N 0 N 0 0 0 N 0 N 0

é ù
ê ú
ê ú= ê ú
ê ú- -ê úë û

N  (4-40)

Each interpolation function in equation (4-40) is defined in equation (4-7). 

 

4.3 Formulation of Neural Network based Hysteretic Connection 
Element 

There are two-fold reasons for inclusion of the flexibility of connections into seismic 

response analysis of building structures. First, the nonlinear behavior of connections has 

been known to affect significantly the overall response of low to medium-rise moment-

resisting frames under dynamic loading. Even though the flexibility of connections can 

lead to larger lateral drift than rigid connection cases, the hysteretic damping at 

connections provides superior energy-absorption capacity to rigid connections under 

earthquake loading and reduces inertia forces owing to its ductile behavior. Second, test 

results on steel connection in the SAC program indicate a large variability in load-

carrying capacity of steel beam-column connections. The observed variability is caused 

by many effects (Nakashima, et al. 1998), including: 

Complex 3D loading scenarios (biaxial and shear, axial loads, torsional effects) 

Variations in weld details and quality (number of weld passes, thickness, weld material) 

Variations in geometric properties (angle thickness, number of bolts, bolt pretension, etc) 

Geometric imperfections, residual stresses due to welding and strain hardening of panel 

zone, etc 



 88

The combined effect of the above features can have significant influence on inelastic 

rotational capacity, crack initiation and propagation in beam-column connections as well 

as other semi-rigid connection types of moment resisting frames. In order to better 

understand the seismic response of moment resisting frame building structures, 

incorporation of actual response of connection in assessment and design is required. 

Noting that modeling of the complex behavior of connections such as buckling and 

tearing, etc is still challenging, an alternative method to model the complex nonlinear 

behavior of connections is in needs.  

 There have been two different modeling types in inelastic analysis of steel/RC frame 

structures: lumped inelasticity and distributed inelasticity approach. The lumped 

inelasticity model is frequently called as plastic hinge approach. The lumped inelasticity 

model is efficient computationally because the plastic hinges are usually assumed to be 

located at the end of beam element and the plastification of cross sections can be readily 

represented in terms of stress resultants of spring elements. In practical point of view, any 

moment and force interaction equation can also be directly incorporated into 

computational simulations. On the other hand, the distributed inelasticity approach is 

more accurate than the lumped inelasticity model but computational expense is enormous 

because the inelasticity of the whole volume of structures is checked through modeling in 

both of longitudinal and transversal directions (called fiber model). Moreover, the 

distributed inelasticity model is not appropriate for modeling the complex nonlinear 

behavior of connections since connection details are very much different from any 

standard section. Therefore, to propose the implicit generalized inelastic hysteretic 

connection model, the lumped inelasticity approach is adopted in this report. The 
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generalized inelastic hysteretic connection model is illustrated in Figure 4.8. The model 

has zero length and can be placed at any position between three-dimensional beam-

column elements. The stiffness of connection sub-assemblage can be easily combined 

with the tangent stiffness of the normal three-dimensional beam-column element. One 

example of modeling of connections is illustrated in Figure 4.7. 
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Figure 4.7 Modeling of Connections in Frame Structures 
 

 For the sake of simplicity, only the interactions between axial force and biaxial 

moments are considered in the formulation. However, it is noteworthy that the 

formulation can be extended to full interactions between all the six stress resultants if the 

failure mode is associated with all the six stress resultants. In order to make it easy to 

implement it to any incremental nonlinear finite element codes, an incremental 

equilibrium equation of the connection is expressed as follow. A tangent stiffness matrix 

relates the increments of the actions to those of the deformations.  



 90

 

2 3
1

NN2 2 2
2 2 mat 2

2 3
3 3 3

3 3 3

2 3

j i
1 1
j i

2 2 2
j i

3 3 3

F F F

dF d d
M M MdM = d =[ ] d  

dM d d
M M M

d du du
where   d d d

d d d

⎡ ⎤∂ ∂ ∂
⎢ ⎥∂δ ∂α ∂α⎢ ⎥ δ δ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎢ ⎥∂ ∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪α α⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥∂δ ∂α ∂α⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ α α⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎢ ⎥∂ ∂ ∂
⎢ ⎥
∂δ ∂α ∂α⎢ ⎥⎣ ⎦

⎧ ⎫δ −⎧ ⎫
⎪ ⎪⎪ ⎪α = θ − θ⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪α θ − θ⎩ ⎭ ⎩ ⎭

D

 (4-41)

The dδ, dα2 and dα3 are increments of axial deformation and rotational displacement 

around two local axes. NN
matD  indicates an explicit form of the tangent stiffness of 

connections. This tangent stiffness of connections is expressed in terms of neural network 

parameters as follows. 
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 (4-42)

Where β steepness parameter (1 or ½); Si
σ and Si

ε Scale factors input and output values, 

respectively; Ck activation values from the second hidden layer; Bl activation value from 

the first hidden layer; wij connection weight between neuron i and neuron j. The tangent 

stiffness of connection elements is expanded to the size of the global tangent stiffness 

using the transformation matrix shown as follow. 
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where T is a transformation matrix. Then the tangent stiffness of connections can be 

expanded as follow. 

 T NN
ep matK T D T=  (4-44)

Then the connection stiffness is assembled with the global tangent stiffness. Comparing 

with the existing elasto-plastic analysis method of frame structures, the unique advantage 

of this formulation is that there is no need to have any yield surface for calculating the 

plastic reduction matrix. Noting that interaction equations for the complex connection 

regions are rare, the present formulation approach has an obvious advantage for modeling 

connection behavior. If comprehensive training data are used in training the proposed 

model, the model can simulate any complex non-linear behavior of connections within 

general nonlinear frame analysis program. Moreover, self-learning simulation 

methodology makes it possible to develop the proposed model for connections from 

structural testing measurements. The self-learning simulation methodology will be 

explained in the following Chapter 5. 
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Figure 4.8 Neural Network based Connection Model for Inelastic Analysis of Frame 
Structures 

 

4.4 Numerical Procedures for Nonlinear Analysis 

In this section, detailed numerical procedures for the nonlinear static and dynamic 

simulations with the proposed formulation in the previous sections are presented. For a 

stable numerical procedure under random cyclic loadings, incremental-iterative Newton-

Raphson method is used for finding convergent response points along the equilibrium 

path.   
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4.4.1 Generalized Constraint Equation for Displacement Boundary 
Conditions 

The generalized inelastic hysteretic connection model is placed at any expected plastic 

hinge location to connect three-dimensional beam-column elements. If a failure mode is 

governed by the interaction between axial force and bending moment, then degrees of 

freedom corresponding to shear deformation can be modeled by a linear elastic spring 

with infinite stiffness or condensed out. Particularly, in a process of the self-learning 

simulation, displacement measurements should be applied to structures. In this report, a 

generalized constraint equation is applied to the global stiffness equation before solving 

the incremental equilibrium equation at each iteration step. If part of degrees of freedom 

is constrained with others by linear multi-point constraint equations, it can be expressed 

as follow.  

 i1 1 i2 2 ij j i1 neq iG G ... G ... G HΔ + Δ + + Δ + + Δ =  (4-45)

Gij is the coefficient associated with j-th degrees of freedom in i-th constraint equation. Hi 

is a constant that characterizes the relationship between the degrees of freedom. The 

equation (4-45) can be expressed in matrix form as follow.  

 
[ ] { }e

e c
c

|
Δ

G G H
Δ
⎧ ⎫

=⎨ ⎬
⎩ ⎭

 (4-46)

Δe and Δc are degrees of freedom to be eliminated and to remain, respectively. The 

equation (4-45) is used to condense out the incremental equilibrium equation. Then the 

degrees of freedom to be eliminated can be expressed in terms of degrees of freedom to 

remain as follow. 
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= − = +
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After rearranging the incremental equilibrium equation, it can be expressed as follow. 

 t t
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As shown in equation (4-48), the tangent stiffness matrix is divided into sub-matrices that 

represent stiffness and coupling between eliminated degrees of freedom and active 

degrees of freedom. Substituting the incremental form of equation (4-47) into equation 

(4-48), the equation (4-48) can be rewritten as follows. 

 t t t t t
e ee e ec c ee e ee ec c ec c

t t t t t
c ce e cc c ce e ce ec c cc c

d d d d d d

d d d d d d

F K Δ K Δ K Γ K Γ Δ K Δ

F K Δ K Δ K Γ K Γ Δ K Δ

= + = + +

= + = + +
 (4-49)

where 1
e ed dΓ G H−= . Then the effective incremental equation can be derived as follow. 

 t t t
c ce e ce ec cc c(d d ) ( )dF K Γ K Γ K Δ− = +  (4-50)

However, the effective stiffness is unsymmetrical. To make it symmetry, the effective 

force is modified using contragradience rule between force and displacement vector. 

 t T t
c,eff c ce e ec e ee ed d d (d d )F F K Γ Γ F K Γ= − + −  (4-51)

Then the effective tangent stiffness matrix becomes symmetric as follow. 

 t
c,eff eff c

t t t T t T t
eff cc ce ec ec ec ec ee ec

d dF K Δ

K K K Γ Γ K Γ K Γ

=

= + + +
 (4-52)

After solving the equation (4-52) for increment of the displacement at the active degrees 

of freedom cdΔ , the solution corresponding to the eliminated degrees of freedom can be 

calculated using the equation (4-47). This condensation process can be easily applied to 

the problems where any prescribed displacement boundary condition is imposed by 
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taking non-homogeneous form of equation (4-45). Similarly, the same process can also 

be applied to an effective equilibrium equation from the dynamic equation of motion.  

 

4.4.2 Numerical Procedures for Nonlinear Static Analysis 

In this section, the detailed numerical procedures used for nonlinear static analysis of 

frame structures with the proposed generalized inelastic hysteretic connection model are 

exhaustively explained. The geometrical nonlinearity is considered using the geometric 

stiffness derived in Section 4.2.2 based on the incremental Updated Lagrangian 

formulation method and the material nonlinearity is assumed to be concentrated at the 

locations where the inelastic model is defined. For solving the incremental equilibrium 

equation, incremental-iterative Newton-Raphson solution algorithm is used in which the 

tangent stiffness is reformed referring to the last equilibrated state at every iteration step. 

The detailed flow chart for geometric and material nonlinear analysis procedures are as 

follows. 

Step 1) Read the basic finite element data given at the initial configuration C0: nodal 

coordinates, element connectivity data with sectional, material properties and local 

directional data and loading data. 

Step 2) Calculate the equivalent load vector and fixed end force vector from various 

loading information. ‘nelem’ is total number of elements. 

 nelem
0 0

i
1

F f
=

= ∑
i  

(4-53)

Assume that the current incremental step is n and Start the current incremental step n. 
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Step 3) Calculate the unbalanced force vector including unbalanced force left-over from 

the previous incremental step. 

 0 0
n n 1/ nincrR F R −Δ = +  (4-54)

where ‘nincr’ is the total number of incremental steps and Rn-1 the unbalanced force left-

over from the previous incremental step. 

Assume that the current iteration step is k and Start the current iteration step k. 

Step 4) Initialize the global tangent stiffness matrix and increment of the internal resisting 

force vector. 

 (k) (k)
t ,n n   and   K 0 I 0= Δ =  (4-55)

Step 5) Assemble the current tangent stiffness matrix from elemental matrices of 3D 

beam-column element and generalized inelastic connection element. 

 nelem nNNelem
(k) T (k) (k) T NN
t,n i,e i,g i,e

i 1 i 1
( ) (k )

= =
= + +å åK T k k T T T  (4-56)

where T is a transformation matrix defined in Appendix. ‘nNNelem’ is total number of 

the proposed connection elements. 

Step 6) Apply the constraint equation if necessary and Calculate the effective tangent 

stiffness and load vector with equations (4-51) and (4-52). 

Step 7) Solve the incremental equilibrium equation for the incremental displacement 

vector. 

 (k) (k) 1 (k)
n t,n n

(k) (k 1) (k 1)
n n n

[ ]-

- -

D = D

D = D - D

U K R

R R I
 (4-57)
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Step 8) Calculate the incremental internal resisting force vector of the three-dimensional 

beam-column elements and connection elements. For the beam-column elements, the 

increment of internal resisting forces is calculated as follows. 

 nelem
(k) (k) (k) (k)
n i,e i,g i,n

i 1
[ ]

=
D = + DåI k k u  (4-58)

Detailed equations used for the calculation can be found in section 4.2.3. For the NN 

based inelastic connection element, the increment of the internal resisting force vector 

and the algorithmic tangent stiffness are calculated differently. For the one-dimensional 

case in terms of moment-rotation pairs, the procedure for calculating them is illustrated in 

Figure 4.9.  

Step 9) Update the configuration to the latest configuration. 

 (k) (k 1) (k)
n n n

-D = D + DX X U  (4-59)

Step 10) Calculate the unbalanced force vector. 

 (k 1) (k) (k)
n n n

+D = D - DR R I  (4-60)

Step 11) Check the convergence. If satisfied, go to Step 3 and apply next load increment. 

Otherwise, repeat the iteration step from Step 4. 

 

 

 



 98

M

θ

(k)
n

(k) n 1 n 1
n n 1 n 1
(k)
n

K  is calculated by equation 4.34
with input { , , M , , }

and output M

− −
− − θ θθ θ ξ Δ η

n 1M −

n 1−θ nθ

nM

(1)
nRΔ

(2)
nRΔ

(k)
nθ n 1−θ n 1M −

n 1−
θξ

n 1−
θΔ η

(k)
nM

… …

……
(1) (1)
n n n 1I M M −Δ = −

(2) (2) (1)
n n nI M MΔ = −

(1)
nθ

(2)
nθ

M

θ

(k)
n

(k) n 1 n 1
n n 1 n 1
(k)
n

K  is calculated by equation 4.34
with input { , , M , , }

and output M

− −
− − θ θθ θ ξ Δ η

n 1M −

n 1−θ nθ

nM

(1)
nRΔ

(2)
nRΔ

(k)
nθ n 1−θ n 1M −

n 1−
θξ

n 1−
θΔ η

(k)
nM

… …

……

(k)
nθ n 1−θ n 1M −

n 1−
θξ

n 1−
θΔ η

(k)
nM

… …

……
(1) (1)
n n n 1I M M −Δ = −

(2) (2) (1)
n n nI M MΔ = −

(1)
nθ

(2)
nθ

 

Figure 4.9 Use of Neural Network for Calculations of Increment of Internal 
Resisting Force and Tangent Stiffness 

 

As shown in Figure 4.9, the latest converged load step is referred when forward passing 

of the neural network is performed for calculation of the internal resisting force vector 

and tangent stiffness. For the purpose of stable predictions by the NN based model, 

secant stiffness within a load incremental step is assumed to be tangent stiffness. 

According to numerical tests, the rough assumption gives reasonable predictions even 

though bookkeeping of the latest converged solution and the latest iterative solution is 

needed.   

 

4.4.3 Numerical Procedures for Nonlinear Dynamic Analysis 

In this section, detailed numerical procedures used for the nonlinear dynamic analysis of 

frame structures with the proposed inelastic hysteretic connection model are explained. 

The dynamic equation of motion is integrated with Newmark average acceleration 

scheme which has integration parameters, β=1/4 and γ=1/2. For finding the convergent 
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response points between each time step, Newton-Raphson iterative solution scheme is 

used in which the tangent stiffness is updated at each iteration step. In dynamic 

simulations, the geometric nonlinearity is considered because its effect can be significant 

on the examples with large deformation under large axial forces. Using the numerical 

damping parameter α (Hilber, et al. 1977), the dynamic equation of motion can be written 

as follow. 
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where M, C and K are mass matrix, damping matrix and tangent stiffness matrix, 

respectively; n indicates n-th time step. The consistent mass matrix can be formulated 

using interpolation functions. 

 T

V

dVr= òM N N  (4-62)

The damping matrix is calculated by Rayleigh damping approach as follow. 

 0 1a a= +C M K  (4-63)

The mass and stiffness proportional damping parameter can be determined as follow. 

 i j
0 1

i j i j

2 2a     a
w w

V V
w w w w

= =
+ +

 (4-64)

where ς is a modal damping ratio which is assumed to be the same for the two different 

modes i and  j. ωi and ωj are natural angular frequency at i-th and j-th mode. In order to 

use the incremental-iterative solution scheme for nonlinear problems, the equation of 

motion in (4-61) is reformulated in the difference form. When there is any constraint 
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equation, the effective equation of motion can be reformulated through the condensation 

process as explained in section 4.4.1. 

 eff n eff ,nD = DK U F  (4-65)

The effective tangent stiffness and loading vector in equation (4-65) can be expressed as 

follow. The derivation can be found in a reference (Chopra 2000). 
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After applying the generalized constraint equation, the effective equation of motion can 

be expressed in terms of active degrees of freedom. 

 ( )T T
eff ,cc eff ,ce ec ec eff ,ec ec eff ,ee ec

T
n eff ,n,c eff ,ce e ec eff ,n,e eff ,ee e
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D = D

%

%

% %
 (4-67)

For the sake of simplicity, the numerical damping parameter is omitted in the following 

flow chart. 

 
n 1 n 1 n 1 n 1+ + + +D + D + D = DM U C U K U F&& &  (4-68)

Step 1) Calculate the initial acceleration from initial conditions and time step Δt. 

 1
0 0 0 0( )-D = - D - DU M F C U K U&& &  (4-69)

Step 2) Calculate parameters for effective force vector 

 1 1   and   t 1
t 2 2

g g
b b b b

æ ö÷ç= + = + D - ÷ç ÷÷ççD è ø
a M C b M C  (4-70)

Assume that current time step is n and start time integration at the current step. 

Step 3) Calculate the effective loading vector 
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n n 1 n 1 n 1- - -D = D + +F F aU bU& &&  (4-71)

Assume that the current iteration step is k and Start the current iteration step k (Newton-

Raphson iteration) 

Step 4) Assemble the current tangent stiffness matrix from elemental matrices of the 

three-dimensional beam-column elements and the connection element and calculate the 

effective stiffness matrix. 

 

( )
(k)

eff t ,n 2

(k)
t ,n

1
t t

where  from equation (4.56)

K K C M

K

g
b b

= + +
D D  (4-72)

Step 5) Apply the constraint equation to calculate effective incremental equilibrium 

equation in terms of active degrees of freedom. The equation (4-67) is used. 

Step 6) Solve the incremental equilibrium equation for the incremental displacement 

vector. 

 (k) (k) 1 (k)
n n n[ ]-D = DU K F% %  (4-73)

Step 7) Calculate the incremental internal resisting force vector (k)
nDI  of the three-

dimensional beam-column elements and connection elements. The computation is the 

same as the one for nonlinear static analysis but the compensation of the dynamic effect. 

 (k 1) (k) (k) (k) (k) (k)
n n n n n n( ( ) )+D = D - D + - DF F I K K U% % %  (4-74)

Step 8) Update the configuration to the latest configuration. 

 (k) (k 1) (k)
n n n

-D = D + DX X U  (4-75)

Step 9) Check the convergence. If satisfied, go on to Step 10 and repeat from Step 3 for 

next time step. Otherwise, repeat the iteration step from Step 4. 

Step 10) Calculate velocity and acceleration values at the converged response point 
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Numerical examples for verifying the proposed connection model as well as the 

numerical procedure and implementation follow in next section. 

 

4.5 Numerical Examples 

The objectives of the numerical examples are to verify the proposed hysteretic connection 

models and the proposed formulations and algorithms in the nonlinear analysis. The 

numerical examples in this section consist of four parts. 

1) Geometrical nonlinear static analysis of a simple strut with imperfection of 0.1 % 

under axial loading. 

2) Nonlinear static and dynamic analysis of one-bay two-story frame 

3) Nonlinear dynamic analysis with the proposed hysteretic connection model. 

4) Nonlinear static analysis of NN based plastic hinge element under a non-proportional 

cyclic loading. 

 

4.5.1 A Simple Strut subjected to Elastic Buckling Load 

A simple strut is modeled with four beam-column elements and it has imperfection of 

0.1% of the length 10 m. The beam has a tube section which has outside diameter of 

193.7 mm and thickness of 6.3 mm. Its elastic Euler buckling load is calculated as 

Pcr=πEI/L2=323.7 kN. The Young’s modulus used is 2.05x108 kN/m2 and the poisson 
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ratio is 0.3. The axial force is incrementally imposed up to 80% of the buckling load 

before the solution response diverges because of well-known limitation of the load 

controlled Newton-Raphson algorithm. The geometrical nonlinearity is considered as 

formulated in the previous section. This example is analyzed by Chan and Chi (Chan and 

Chui 2000) and the present result is compared with the result from general nonlinear 

finite element software, ABAQUS (ABAQUS/Standard 2004) as illustrated in Figure 

4.10. 
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Figure 4.10 Simple Strut subjected to Elastic Buckling Load 
 

4.5.2 Nonlinear Static and Dynamic Analysis  

In this example, a one-bay two-story frame with nonlinear connection behavior is 

analyzed to investigate the effect of nonlinear characteristics at connections on the global 

response. The overall structural dimensions and numerical model used is illustrated in 

Figure 4.11. The beams are modeled by two elements and the column is modeled by one 
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element. For the consideration of P-Δ effect, gravity loading is represented by 

concentrated loading at each node on the beam. The nonlinear behavior of the 

connections is modeled by Ramberg-Osgood Model calibrated with a test result 

(Ostrander 1970) on a flush and plate connection illustrated in Figure 4.13. For 

comparisons between various connection types, the connections are also modeled by rigid 

and linear connections. The moment-rotation relationship is illustrated in Figure 4.12. In 

order to check the capacity of the frame with the flexible connection, push-over analysis 

is performed with gradually increasing horizontal forces. The horizontal displacement at 

the second floor versus load factor λ is plotted in Figure 4.14. For verification of the 

proposed formulation and algorithm with flexible connection models, the results are 

compared with ABAQUS results. According to the result, the proposed formulation 

proves to reasonably estimate the maximum load-carrying capacity of frame structures 

with flexible connections. Particularly, because of the P-Δ effect, the second-order 

analysis results are showing larger displacements than the first-order analysis results with 

the same load factor. 
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(a) Geometrical dimension     (b) Numerical Model 

Figure 4.11 One-bay two-story frame with flush and plate connections 
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Figure 4.12 Moment-Rotation Relationship of Various Connection Modeling 
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Figure 4.13 Flush and Plate Connection 
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Figure 4.14 Push-over Analysis Results and Comparison with ABAQUS (v6.5-4) 
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Figure 4.15 Push-over Analysis Results with Various Connection Modeling 
 

Evidently, the flexible connection behavior has significant influence on the load carrying 

capacity of the two-story frame as shown in Figure 4.15. Therefore, the accurate 

modeling of the connection behavior is very important in the assessment of resistance of 

frame structures to static loading. In the following example, the dynamic response 

characteristic of the same frame is investigated.  

 To investigate the effect of the connection modeling type on the dynamic responses 

of frame structures, the same one-bay two-story building is simulated under an impact 

loading. The numerical model and loading condition without gravity loading effect and 

with gravity loading effect are illustrated in Figure 4.16 and Figure 4.17, respectively. 

The gravity loading is represented by lumped masses 7.46 ton in the middle of beams and 

3.73 ton at each connection. When the gravity loading effect is considered, multi-step 

simulation is performed: 1) First, nonlinear static simulation is performed and 2) it is 
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followed by nonlinear dynamic simulation which starts from the converged state and 

configuration. For the verification purpose, the responses with gravity effect and without 

gravity effect are compared with ABAQUS results. In this case, the rotational behavior of 

connection is modeled by spring elements which have linear stiffness as shown in Figure 

4.12. The displacement history at the second floor is illustrated in Figure 4.18 and Figure 

4.19. According to the results, reasonable dynamic response can be obtained by the 

proposed formulation and algorithm for both of linear and nonlinear response. 

 

 

 

 

: mass 7.46 ton

: mass 3.73 ton

2xP(t)

P(t)

1.0 sec Time (sec)

P (t)

7.5 (kN)

: mass 7.46 ton

: mass 3.73 ton

2xP(t)

P(t)

1.0 sec Time (sec)

P (t)

7.5 (kN)

1.0 sec Time (sec)

P (t)

7.5 (kN)

 

Figure 4.16 Impact Loading and Numerical Model without Gravity Loading Effect 
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Figure 4.17 Loading and Numerical Model with Gravity Loading Effect (Multi-Step 
Simulation) 
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Figure 4.18 Dynamic Response of Two-story Frame with Linear Connection Model 
without Gravity Loading Effect 
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Figure 4.19 Dynamic Response of Two-story Frame with Linear Connection Model 
with Gravity Loading Effect 
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Figure 4.20 Comparison of Top Displacement between the results with Gravity 
Effect and without Gravity Effect 
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Figure 4.21 Dynamic Response with Various Connection Types ( Rigid, Linear and 
Nonlinear Connection) 

 

According to the comparison between the results with gravity effect and without gravity 

effect in Figure 4.20, the amplitude during free vibration phase has become increased by 

25% because of the consideration of geometric nonlinearity. Moreover, the vibration 

period has also become increased significantly because of the P-Δ effect. The effect of 

flexibility at connection regions on the dynamic response is salient as shown in Figure 

4.21. Owing to the flexibility, the amplitude has increased and also gradually decreased 

after 1 second because of hysteretic damping at connections.  

 

4.5.3 Dynamic Analysis of a Frame with NN based Connection Model 

A primary objective of this example is to verify the proposed NN based model in 

nonlinear dynamic simulation. In the lumped inelasticity approach, phenomenological 

models representing the cyclic behavior of flexible connections are usually utilized to 

investigate dynamic responses of frame structures within dynamic simulation computer 
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codes for a given cyclic loading. Since the phenomenological models are usually 

obtained from exhaustive regression of experimental data and curve-fitting process, they 

are dependent on experimental data. If either given cyclic loading or structural detail 

changes, the model should also change. However, once the proposed NN based 

connection model is trained by enriched experimental data, it can represent such a 

complex hysteretic behavior.  

 The test model is a half model of a two-story frame with semi-rigid connections. The 

frame was tested using an explicit pseudo-dynamic testing method by Elnashai et al. 

(Elnashai, et al. 1998). The instrumentation and dimension are shown in Figure 4.22 and 

geometrical dimension of the test specimen is summarized in Table 4.1.  

 

Table 4.1 Geometrical Properties of Test Specimen (Elnashai, et al. 1998) 

Components Dimension 
Beam Welded Section: H 250 x 130 x 9 x 9 

Column Rolled Section: H 150 x 150 x 7 x10 
Top/Bottom Angle L 75x 75 x 9: Length 150 

Web Angle L 75 x75 x 8: Length 190 
Bolt Diameter 16 mm 

 

Two concentrated masses, 8000 kg at each story, are assumed in the numerical model. 

For an input ground motion, the 1940 Imperial Valley (El centro) N-S component 

acceleration record of 15-sec duration was used. The peak ground acceleration is scaled 

up to 0.45g. The time step 0.01 sec was used in the pseudo-dynamic testing. Mass 

proportional damping only is assumed with 5% and 0.5% damping ratio for the first and 

second mode, respectively. The numerical model is described in Figure 4.23. 
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 For the purpose of verification, two-stage verification method is employed. First, the 

semi-rigid connections are modeled using a phenomenological model (Ramberg-Osgood 

model) and the phenomenological model is shown to be able to reasonably predict 

dynamic responses through comparisons with experimental results in terms of horizontal 

displacement history at each story. Second, the proposed NN based connection model is 

trained with the verified simulated testing results (called reference data or model) and 

used in the incremental nonlinear finite element code developed in this report. Then, the 

performance of the proposed model is verified in predicting the response of the two-story 

steel frame structure with semi-rigid connections under earthquake loading. It is 

noteworthy that not only can the proposed model be developed directly from any 

available accurate local connection behavior but also it can be developed from self-

learning simulation described in the following chapter. 
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Figure 4.22 Instrumentation and Dimension of Test Model (Elnashai, et al. 1998) 
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Figure 4.23 Numerical Model and its Dimension for Simulation 
 

 The capacity of the semi-rigid connection is calculated utilizing JMRC (Joint 

Moment Rotation Curve) software (Faella, et al. 2000). The JMRC can reasonably 

predict the initial rotational stiffness and the flexural resistance for any type of steel 

beam-column connections. The computed capacity of the connection is summarized in 

Table 4.2. In the Ramberg-Osgood model, the reference moment (M0) giving rise to a 

permanent rotation (θ0) corresponds to the plastic flexural resistance (MRd) of connections 

in JMRC.  
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Table 4.2 Capacity of Semi-Rigid Connection from JMRC 

 Initial Rotational Stiffness 
(kN/Rad) Flexural Resistance (kN*m) 

Semi-Rigid Connection 
(Bolted with Angles) 13916.85 36.044 

 

 Two elements are used for columns and three elements are used for modeling beams. 

The Young’s modulus is assumed to be 2.05 x 108 (kN/m2) and poisson ratio is assumed 

to be 0.3. All the elements have density 7.85 (ton/m3). Figure 4.24 shows comparisons of 

the displacement history between the experiment and the numerical simulation with semi-

rigid connections. As shown in Figure 4.24, the numerical simulation (reference 

simulation) is reasonably predicting the maximum displacement amplitude. Toward the 

end of the verification, the proposed NN based model is trained with moment-ration data 

from the reference simulation. The connections at each story are modeled by two 

different NN based connection models so they are separately trained.  
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(a) Displacement at the Second Story 
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(b) Displacement at the First Story 

Figure 4.24 Comparisons between Numerical Simulation and Experiment 
 

The information about training of the proposed model is described in Table 4.3. The 

number of layers in the neural network is three excluding the input layer and 50 neurons 

are used per each hidden layer. The NN based connection model is represented as follows. 

 { } { }( )n 1 NN n+1 n n ,n
ˆM M , , M , : 4 50 50 1+ q= q q z - - -  (4-77)

The standard Newton-Raphson iteration method is used for solving nonlinear equilibrium 

equation of motion. 

 

Table 4.3 Training Information of the NN based Connection Model 

 Number of Epochs 
used in Training NN Architecture Average Error 

in Training 
NN based Model for 

1st Floor 20,000 {4-50-50-1} 3.253 x 10-6 

NN based Model for 
2nd Floor 20,000 {4-50-50-1} 5.699 x 10-6 
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(a) Displacement at the Second Floor 
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(b) Displacement at the First Floor 

Figure 4.25 Comparison between NN based Connection Model and Reference Model 
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(a) Moment-Rotation at the Second Floor 
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(b) Moment-Rotation at the First Floor 

Figure 4.26 Comparison between Reference Model and NN based Model 
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(b) Displacement at the First Floor 

Figure 4.27 Comparison between Experimental Results and NN based Connection 
Model 

 

 The predicted global responses by the proposed NN based model are matching well 

with the reference simulation results and the experimental results according to the 

comparison illustrated in Figure 4.25 and Figure 4.26. The comparisons with 

experimental result are illustrated in Figure 4.27. Even under earthquake type loading, 

every spike in the response could be accurately predicted by the proposed NN based 
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connection. It is one of the main advantages of using the proposed NN based connection 

model for representing very complex nonlinear hysteretic behavior of connections and 

predicting the global response of structures by standard nonlinear dynamic analysis codes.  
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(a) Time History of Horizontal Displacement at the First Floor 
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(b) Time History of Horizontal Displacement at the Second Floor 

Figure 4.28 Prediction of Response to New Loading Condition 
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In order to check the generalization of the trained NN based model, totally new input 

motion (negatively damped harmonic motion) is applied instead of earthquake type 

loading. Figure 4.28 shows the comparison of the predicted displacement by the NN 

based connection model with the reference model. This implies that the proposed NN 

based connection model can be responsive to change of loading history. In the following 

section, the NN based connection model is applied to plastic hinge. 

 

4.5.4 NN based Plastic Hinge Elements 

In this example, the proposed NN based connection model is used by plastic hinge 

elements of a tubular cantilever. The plastic hinge element is named as NN based plastic 

hinge element. The primary purpose of this example is to introduce the NN based plastic 

hinge as a new inelastic analysis method of frame structures in which plastic hinges are 

formed at the end of the member. The secondary objective of this example is to confirm 

performance of the proposed NN based plastic hinge element in multi-dimensional 

problem whereby bi-moments are acting. There are three advantages in the proposed 

simulation method; 1) the NN based plastic hinge model can represent any complex 

hysteretic behavior from 3D finite element analysis. 2) The computation of tangent 

stiffness matrix and internal resisting forces is relatively easier than any existing method. 

3) The trained NN based plastic hinge element can be reused and updated with new 

training data. 
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4.5.4.1 NN based Plastic Hinge under Monotonic Loading 

In order to get training data for the NN based plastic element, three-dimensional finite 

element analysis is performed using solid element (C3D8) in ABAQUS. The tubular 

section has diameter, 609.6 mm and thickness, 38.9 mm. The bilinear material model is 

defined in which Young’s modulus is E = 200,000 (MPa); poisson ratio is ν = 0.3; yield 

stress is σy = 248.2 (MPa) and hardening stiffness is 0.02E. The monotonic loading is 

applied at the tip of tubular column in X direction with the displacement boundary 

condition.  
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Figure 4.29 Three-Dimensional Finite Element Model and Assumed Plastic Hinge 
Length for Monotonic and Cyclic Loading (Contour Equivalent Plastic Strain) 
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 To get rotational deformation through the assumed plastic hinge length, three-

dimensional decoupling elements are used at then end of plastic hinge. The determined 

length of plastic hinge is illustrated in Figure 4.29. The moment at the plastic hinge is 

calculated by multiplying the force by distance from the tip of column to the center of 

plastic hinge. The moment-rotation data are used to train the NN based plastic hinge 

element. The training information is summarized in Table 4.4. The NN based plastic 

hinge is assumed to be initially rigid. 

 

Table 4.4 Training Information of the NN based Plastic Hinge Element 

Number of Epochs 
used in Training NN Architecture Average Error 

in Training 
50,000 {4-20-20-1} 3.747 x 10-5 
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Figure 4.30 Force-Deflection Relationship for X Load Only 
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After training, the NN based plastic hinge is plugged into beam-column element model 

for finite element analysis. Figure 4.30 shows good agreement between 3D finite element 

analysis and NN based plastic hinge element. The training NN based plastic hinge 

element can be updated with additional information and be reused. It is noteworthy that 

the application of the NN based plastic hinge element is not limited to steel material only 

but also extended to concrete and composite material as long as the inelastic deformation 

is concentrated in the assumed region. 

 

4.5.4.2 NN based Plastic Hinge under Non-Proportional Cyclic Loading 

In this example, the same tubular cantilever as the previous example is subject to bi-axial 

moment actions.   
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(a) Displacement Path Imposed     (b) 3D Numerical Model 

Figure 4.31 Loading Path and Numerical Model with NN based Plastic Hinge 
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(a) Force-Displacement in X Direction   (b) Force-Displacement in Y Direction 

Figure 4.32 Comparison of Force-Displacement between 3D FE analysis and NN 
based Plastic Hinge Model 
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Figure 4.33 Variation of Actions within Yield Surface and Its Comparison with NN 
based Plastic Hinge Element 

 

From three-dimensional finite element analysis, training data are also generated and the 

length of plastic hinge is assumed to be 700 mm distance from the support as illustrated 
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in Figure 4.29. The loading path is described in Figure 4.31 (a). The numerical model 

employing the NN based plastic hinge element has 18 degrees of freedom as shown in 

Figure 4.31 (b). The other degrees of freedoms (Dx, Rx, Ry and Rz) at the ends of NN 

based plastic hinge element except Dx and Dy are constrained. The column is modeled by 

3D beam-column element and the same material specification as the previous model is 

used except the hardening stiffness. In this example, the hardening stiffness is set to 0.1E. 

The representation of the NN based plastic hinge element can be expressed as follow. 

 
{ } { }( )xn

NN x,n y,n x,n 1 y,n 1 x,n 1 y,n 1 x,n y,n
yn

M ˆ , , , , M , M , , : 8 28 28 2
M

M ς ς− − − − θ θ

⎧ ⎫
= θ θ θ θ − − −⎨ ⎬

⎩ ⎭
 (4-78)

Where Mx and My indicate moment in x and y direction; θx and θy rotation in x and y 

direction, n indicates n-th load step and ζ indicates internal variable for hysteretic 

behavior. As done in the previous example, the NN based plastic hinge element is 

assumed to be initially rigid. The training information is summarized as in Table 4.5. 

 

Table 4.5 Training Information of the NN based Plastic Hinge Element 

Number of Epochs 
used in Training NN Architecture Average Error 

in Training 
50,000 {4-28-28-1} 9.227 x 10-6 

 

Figure 4.32 shows reasonable agreements between NN based plastic hinge model and 3D 

finite element model in both directions. Figure 4.33 shows that the NN based plastic 

hinge model can reproduce the process of action increments during yield surface updating. 
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4.6 Conclusions 

In this chapter, NN based connection element has been developed for representing 

complex inelastic hysteretic behavior at connection regions and three-dimensional beam-

column element has been formulated with consideration of geometric nonlinearity for 

second-order analysis. Combining three-dimensional beam-column element with the NN 

based connection element, nonlinear static and dynamic analysis procedures have been 

presented. Through a series of numerical examples with semi-rigid beam-column 

connections, the performance of the developed computer program has been verified and 

the importance of modeling of nonlinear behavior of connections has been revisited 

numerically.  

 Semi-rigid connections in a frame structure are modeled by the NN based connection 

model which is trained by synthetic data from a simulated testing and the trained NN 

based connection elements are plugged into finite element model under earthquake 

loading. According to the test result, not only could the NN based connection model 

provide accurate response prediction as it’s trained but also it could predict dynamic 

response of the structure under a totally new loading condition. In the last two examples, 

the NN based connection model is applied in plastic hinge element and a new simulation 

method has been proposed in which the NN based plastic hinge model is combined with 

three-dimensional finite element analysis. According to the two tests, the proposed model 

has been proved to represent cyclic behavior under both uni- and multi-directional actions. 

 In summary, the unique advantages of the proposed model are that 1) It can represent 

complex inelastic hysteretic behavior 2) It can be used to solve new problems when it is 
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trained with comprehensive data and 3) Its numerical implementation is very efficient 

compared to any conventional connection model. 
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CHAPTER 5 SELF-LEARNING SIMULATION 
FRAMEWORK FOR DEVELOPMENT OF INELASTIC 
HYSTERETIC CONNECTION MODELS 

5.1 Introduction 

Behavior of connections significantly affects global responses of assembled structures 

subjected to cyclic or dynamic loadings. The connections are often the primary source of 

energy dissipation due to hysteretic damping and lead to significant changes in local 

stiffness and strength. In order to develop models for the connections, structural tests on 

the connections or systems have to be conducted. Although the local nonlinear behavior 

can be directly measured during structural tests and used to model the connections, the 

measurement results can become unreliable after exceeding the stability limit. For 

example, measuring apparatus such as strain gauges may not work properly any more 

under severely damaged conditions. Moreover, since responses of the assembled 

structures are of our primary interest, a methodology to characterize the local nonlinear 

behavior of connections from structural tests would be the most desired option. The 

modeling task of the connection behaviors from structural tests can be described in the 

context of complex inverse problems. 

 The neural network (NN) based model offers the potential for developing accurate 

and reliable models of the inelastic hysteretic behavior of material and structural 

components. The concept of NN constitutive models was first introduced by Ghaboussi, 

et al. (Ghaboussi, et al. 1991). In this chapter, the new NN based cyclic material model 

proposed by Yun, et al. (Yun, et al. 2006b) is used. However, the usual modeling of the 

material behavior with NNs requires the results of comprehensive material tests that may 
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not always be available, and in some case not possible. To facilitate the use of the NN 

based material model, auto-progressive training algorithm was proposed by Ghaboussi, et 

al. (Ghaboussi, et al. 1998a). It can perform on-line training of the NN based material 

model through the incorporation of experimental measurements with usual incremental 

nonlinear finite element analysis. This simulation methodology has been recently studied 

on the development of the  constitutive model for soil (Sidarta and Ghaboussi 1998; Shin 

and Pande 2000; Hashash, et al. 2003).  

 This chapter presents a novel self-learning simulation framework to characterize the 

cyclic behavior of connections from structural tests; from its numerical implementations 

to applications to real experimental data. The proposed self-learning simulation 

framework is a new extension of the original auto-progressive training algorithm 

proposed by Ghaboussi, et al. (Ghaboussi, et al. 1998a). Owing to flexible learning 

capabilities of NNs, the proposed connection models can reproduce the actual cyclic 

response of the connection that may experience buckling, nonlinear frictional slip, 

fracture, slacking of fastened bolts as well as yielding of materials. Following the 

development of the new NN based cyclic connection model, the model is first ever 

applied in self-learning simulation mechanics in this chapter. In the following section, an 

overview on the self-learning simulation will be introduced and it is followed by detailed 

numerical implementations regarding the self-learning simulation and use of the NN 

based material model in standard finite element codes.  
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5.2 Self-Learning Simulation Framework 

 

5.2.1 Numerical Procedures for Self-Learning Simulation 

Self-learning simulation algorithm enables extracting the connection behavior directly 

from the global response of structures, (Ghaboussi, et al. 1998a; Sidarta and Ghaboussi 

1998). Based on the parallel analysis scheme suggested by Hashash, et al. (Hashash, et al. 

2003), the self-learning simulation framework has been developed in this report. Since its 

application is for developing the NN based inelastic hysteretic connection model, the 

simulation framework is constructed on nonlinear frame analysis program developed in 

this report. The overall flowchart for numerical procedures of the self-learning simulation 

is illustrated in Figure 5.1. There are three notable features in the numerical procedures; 

1) Two parallel iterative procedures are performed, that is, Step I and Step II. 2) There is 

additional iterative loop called auto-progressive cycles between the loop for load 

increments and the loop for equilibrium iterations. 3) The outermost loop is for NN Pass 

which is one complete pass of all the load increments. It is intended to find better training 

data base for the NN based model by restarting the whole analysis with the latest NN 

based model and training data base.  

 Evolution of the NN based model is mainly attributed to the auto-progressive cycles. 

It is true that the auto-progressive cycle plays an essential role in evolving the NN based 

connection model during self-learning simulation because it directly makes the NN based 

model able to learn realistic behavior of connections through updating training data base 

followed by training. One specific auto-progressive cycle is illustrated in Figure 5.2. In 

order to develop a NN based connection model from structural testing, a set of 
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experimental measurements at control points in a tested specimen are required, for 

example, force and displacement history. The NN based connection model is trained 

during the computational simulation of the structural experiment. One auto-progressive 

cycle is completed by 1) conducting Newton-Raphson iterations of two FE models in 

Step I and Step II, 2) appending a new input pattern to training data base, 3) training the 

NN based model with the updated training data base and 4) checking criteria to stop the 

auto-progressive cycles. To avoid confusion in the following description, iteration means 

Newton-Raphson iteration and cycle means auto-progressive cycle. 

 At each load step (or time step) two FE analyses are performed: in the first FE 

analysis (called as Step I or FEM-A later) the measured forces are applied; and, in the 

second FE analysis (called as Step II or FEM-B later) the measured displacements are 

enforced. It is stipulated that the stress resultant vector in Step I represent acceptable 

approximation of the actual stress resultant vector, while the displacement vector in Step 

II is considered to be a good approximation of the actual displacement vector. At the end 

of iteration of the current cycle of the current load increment, the stress resultant vector 

from Step I and the displacement vector from Step II are appended into a training data 

base and the NN based connection model is retrained with the updated training data base. 

In the next auto-progressive cycle of the current load increment, the NN connection 

weights are kept but the last input pattern will be replaced by a new input pattern 

obtained in the next auto-progressive cycle. If the given criteria are satisfied, the auto-

progressive cycle is stopped and the auto-progressive cycle continues for the next load 

increment. If they are not satisfied, the cycle continues. One complete pass for all the 
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load increments is called a Pass, and several passes may be required to completely train 

the NN based connection model.  

 In the following section, important issues relating to the self-learning simulation are 

described; Pre-training of the NN based model, Specific criteria for auto-progressive 

cycle, and Static and dynamic forward analysis. 
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Figure 5.1 Flow Chart of Self-learning Simulation 
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Figure 5.2 Auto-progressive Cycle 
 

5.2.2 Pre-Training of Neural Network based Connection Model 

Initial behavior of complex steel beam-column connections can not be easily defined 

while the linear elastic material assumption with Young’s modulus and poisson ratio has 

been frequently used for pre-training the NN based material model. Fortunately, there are 

data bank and software available for calculating initial rotational stiffness and plastic 

flexural resistance of any type of beam-column connections (Weinand 1992; Kishi and 

Chen 1986). However, other pre-training data could be used for the NN based connection 

model as long as they give better approximation to initial stiffness than any other 

approximation. In this report, JMRC software is used to evaluate initial rotational 

stiffness of connections. For the proposed NN based model, very small range of stress 

resultants and displacements are selected and input patterns are automatically generated 
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in the research code. The pre-training data are enriched with additional data generated by 

varying the load step of the first load increment both in loading and unloading direction.  

 

5.2.3 Criteria for Auto-progressive Cycle 

The auto-progressive cycles are usually performed three to five cycles per each load 

increments. The auto-progressive cycles continues until a displacement error is satisfied 

with a user-defined tolerance. The displacement error is defined as the displacement 

difference between Step I and Step II. The displacement error is calculated as following. 

 NRef

Step I Step II iStep I Step II max i=1

Step II Step IImax max

- NRef-
<    or   <  

U UU U

U U

å
tol_max tol_avg  (5-1)

where  represents Euclidean norm; Ustep I and Ustep II are displacement vectors from 

Step I and Step II, respectively; tol_max and tol_avg are user-defined tolerance for 

maximum error and average error, respectively and NRef indicates the total number of 

control points in tested specimen. The criteria are evaluated at all of the control points for 

calculating the max and average norm of the displacement vector.  

 

5.2.4 Static and Dynamic Forward Analysis 

After training the NN based connection model through the self-learning simulation, the 

NN based model can be used within nonlinear static and dynamic simulation codes as 

substitutes for any phenomenological model. This subsequent analysis following the self-

learning simulation is called forward analysis. In this report, the NN based connection 

model can be trained in nonlinear static analysis mode. If any accurate experimental 
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result is available and the NN based connection model is trained directly from the 

experimental result, the NN based model also can be used in nonlinear dynamic analysis. 

In this report, nonlinear static analysis with the NN based model is named as static 

forward analysis and nonlinear dynamic analysis with the NN based model is named as 

dynamic forward analysis. 

 

5.3 Algorithmic Formulation of NN based Model in Self-learning 
Simulation 

During auto-progressive training of the self-learning simulation, the NN based 

connection model is used instead of any existing phenomenological connection model. A 

material package for the NN based connection model does two important roles like the 

existing model; 1) Calculation of the increment of the internal resisting force vector 

corresponding to the increment of displacement vector at the current iteration step and 2) 

Calculation of tangent stiffness matrices at the current iteration step. However, the NN 

based connection model does not need any design interaction equation or yield surface in 

stress resultant space while existing phenomenological model requires them for 

calculating predictor stress resultant and tangent stiffness matrix subsequently. Therefore, 

it is relatively easier to implement the NN based connection model in finite element 

codes than any other phenomenological based hysteretic models. 

 For the calculation of the above two quantities, forward propagations of input 

patterns through the trained NN are required within the material package. It is noteworthy 

that there are two algorithmic formulations for the forward propagations within the self-
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learning simulation. Efficiencies of the variations are evaluated. The different algorithmic 

formulations are summarized in Table 5.1 and Table 5.2.  

 

Table 5.1 Two Different Algorithmic Formulations for NN Forward Propagation in 
Step-I (FEM-a) of Self-learning Simulation 

 Calculation of Tangent Stiffness Calculation of Internal Resisting Force 
Case I ( )(i) b(i) b a ab ab

NN NN n n 1 n 1 U,n U,n
ˆF F U , U , F , , ;{NN}− −= ξ Δη  ( )a(i) a (i) a a a a

NN NN n n 1 n 1 U,n U,n
ˆF F U , U ,F , , :{NN}− −= ξ Δη  

Case 
II ( )(i) a (i) a a a a

NN NN n n 1 n 1 U,n U,n
ˆF F U , U , F , , :{NN}− −= ξ Δη ( )a(i) a (i) a a a a

NN NN n n 1 n 1 U,n U,n
ˆF F U , U ,F , , :{NN}− −= ξ Δη  

 

Table 5.2 Two Different Algorithmic Formulations for NN Forward Propagation in 
Step-II (FEM-b) of Self-learning Simulation 

 Calculation of Tangent Stiffness Calculation of Internal Resisting Force 
Case I ( )(i) b(i) b a ab ab

NN NN n n 1 n 1 U,n U,n
ˆF F U , U , F , , ;{NN}− −= ξ Δη  ( )b(i) b(i) b b b b

NN NN n n 1 n 1 U,n U,n
ˆF F U , U , F , , :{NN}− −= ξ Δη  

Case 
II ( )(i) b(i) b b b b

NN NN n n 1 n 1 U,n U,n
ˆF F U , U , F , , :{NN}− −= ξ Δη ( )b(i) b(i) b b b b

NN NN n n 1 n 1 U,n U,n
ˆF F U , U , F , , :{NN}− −= ξ Δη  

 

 The key role of the auto-progressive training cycle is to narrow the displacement 

error between force controlled analysis (Step I or FEM-a) and displacement controlled 

analysis (Step II or FEM-b). Although the self-learning simulation usually starts with pre-

training data generated within a small linear elastic range, the error comes from 

undefined behavior of the NN based connection model beyond the range. Testing of the 

two different cases in self-learning simulation is demonstrated in the following section. 

 

5.3.1 Comparison of Two Algorithmic Formulations in Self-learning 
Simulation 

In order to investigate the efficiency of the two different algorithmic formulations, self-

learning simulations are carried out. A one-bay and two-story steel moment-resisting 
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frame is selected for a testing model (Stelmack, et al. 1986). The frame has semi-rigid 

connections with bolted angles as shown in Figure 5.3. In order to eliminate any 

modeling error related to connections and support conditions between the tested structure 

and its numerical model, synthetic data from simulated testing results are used as 

reference data. The semi-rigid connections are modeled by Ramberg-Osgood Model with 

the initial rotational stiffness of 4,520 (kN-m) and yielding moment of 14.69 (kN-m) as 

the reference (Stelmack, et al. 1986). The Ramberg-Osgood parameter (n) relating to the 

shape is set to 5.0. For numerical modeling of the tested structure, one beam-column 

element per each beam and column is used and the NN based connection model is used to 

represent the moment-rotation behavior and placed at the column face. The geometrical 

nonlinearity is not considered since P-Δ effect is not significant. 
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Figure 5.3 Two-story Frame Structure with Semi-Rigid Connections (Stelmack, et al. 
1986) 

 

For a loading condition, a cyclic loading with continuously increasing amplitudes as 

shown in Figure 5.3 is applied with total 260 load steps. Single NN group is used to 
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represent the four NN based connection models because the nonlinear moment-rotational 

behaviors of connections at the first and second story are similar except the range of 

moments and rotations. The parameters used in self-learning simulations are also 

summarized in Table 5.3. For the two cases, the same parameters were used for exact 

comparisons. 

Table 5.3 Parameters used in Self-learning Simulation 

 Parameters used in Self-learning Simulation 
Number of NN Pass tried 6 

Number of auto-progressive cycles 
in each load step 3 

Tol_avg 0.005 Criteria for the auto-progressive 
cycle Tol_max 0.005 

NN architecture {4-15-15-1} 

Scale factors used abs(θn, θn-1, Mn-1,ςn,Mn) 
< (0.15,0.15,150.0,22.5,150.0) 

 

According to self-learning simulation results, if input patterns for calculation of internal 

resisting force vector consist of force from Step-I and displacement from Step-II, the 

auto-progressive training was failed during the first NN Pass because of inconsistency in 

calculating internal resisting force vectors. Evidently, such input patterns for internal 

resisting force vector can not keep consistency in self-learning simulation. Therefore, the 

results from the input pattern could not be obtained. This means that consistency in 

calculation of the internal resisting force vector is very important during self-learning 

simulation.  

 The self-learning simulation was successfully completed up to the sixth NN Pass in 

both Case I and Case II. The static forward analysis results from Case I and Case II are 

displayed from Figure 5.4 to Figure 5.7. The moment-rotation hysteretic curves at both 

connection 1 and connection 2 are compared. 
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(c) NN Pass 3       (d) NN Pass 4 
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(d) NN Pass 5       (e) NN Pass 6 

Figure 5.4 Moment-Rotation of Connection 1 from Static Forward Analysis: Case I 
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(d) NN Pass 5       (e) NN Pass 6 

Figure 5.5 Moment-Rotation of Connection 1 from Static Forward Analysis: Case II 
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(c) NN Pass 5       (d) NN Pass 6 

Figure 5.6 Moment-Rotation of Connection 2 from Static Forward Analysis: Case I 
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(a) NN Pass 3       (b) NN Pass 4 
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(c) NN Pass 5       (d) NN Pass 6 

Figure 5.7 Moment-Rotation at Connection 2 from Static Forward Analysis: Case II 
 

As the number of NN Passes increases, the NN based connection model gradually learns 

the nonlinear cyclic behavior of the reference model in the two cases. It implies that the 

consistent tangent stiffness calculated by the trained NN based model becomes more 

close to exact tangent stiffness as the auto-progressive training is carried out. It was 

observed that Case I shows gradual improvements in Connection 2 as opposed to 

exacerbations in Case II. 
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(a) Step I in Case I  
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 (b) Step I in Case II 
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(c) Step II in Case I  
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(b) Step II in Case II 

Figure 5.8 Number of Iterations for Converged Solutions versus Auto-progressive 
Cycles Converged (Total Number of Load Step = 260) 
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However, it can not be fully ensured that the differences are purely caused by the 

differences in input patterns. During self-learning simulations, the number of iterations 

for each auto-progressive cycle is plotted in Figure 5.8. The number of iterations is 

plotted for only converged auto-progressive cycles. As shown in Figure 5.8, most of the 

cycles are converged within less than 5 iterations. When comparing between NN Pass 1 

and NN Pass 6, the number of iterations are obviously reduced in NN Pass 6. When 

comparing between Case I and Case II, Case II showed less number of iterations than that 

of Case I at the sixth NN Pass. It is noteworthy that the convergence rate increases as the 

number of NN Pass increases.  

 

5.3.2 Sensitivity to Load Step Size of the NN based Model 

In this example, sensitivity of Case I and Case II to load step sizes is investigated with the 

same example as that of the previous section. Less sensitive feature of the NN based 

model to load step size is very important because uses of the NN based model in 

nonlinear finite element code require interpolative or extrapolative capabilities during 

simulations due to the recurrent uses of the NN based model. For this investigation, the 

loading step size has become two (total 130 load steps) and three (total 65 load steps) 

times larger than the original one and a series of the self-learning simulations are carried 

out. The obtained NN based models from the self-learning simulation are reused in static 

forward analysis and their performance are compared as follows.  
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(a) Case I        (b) Case II 

Figure 5.9 Moment-Rotation from Static Forward Analysis in case of 130 Load 
Steps 
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(a) Case I       (b) Case II 

Figure 5.10 Moment-Rotation from Static Forward Analysis in case of 65 Load 
Steps 

 

As illustrated in Figure 5.9 and Figure 5.10, Case I was successfully completed in the 

self-learning simulation up to the eighth NN Pass with the two different load step sizes 

while Case II failed in the last load step size as shown in Figure 5.10(b). In case of 65 

load steps, the number of iterations versus auto-progressive cycle converged are shown in 

Figure 5.11. 
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(a) Step I in Case I 
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(b) Step I in Case II 
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(c) Step II in Case I 
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(b) Step II in Case II 

Figure 5.11 Number of Iterations versus Auto-progressive Cycles Converged (Total 
Number of Load Step = 65) 

 

As shown in Figure 5.11(a) and (c), the number of iterations for converged solutions per 

each cycle in Case I was reduced as the number of NN Pass increased from NN Pass 1 to 

NN Pass 6. As opposed to Case I, many cycles could not reach converged solutions in 

Case II. Particularly, even one of the cycles at sixth NN Pass of Step-I with Case II input 

patterns was not converged as shown in Figure 5.11(b).  

 

5.3.3 Observations and Discussions 

There are two important observations in the self-learning simulation using synthetic 

experimental data with different input patterns and load step sizes. Input pattern of Case I 

gave better trained NN based connection model than that of Case II as opposed to the fact 

that Case II resulted in faster convergence than that of Case I. However, when larger load 

step sizes (total number of load steps = 65) were used, the Newton-Raphson iterations in 

Step-I and Step-II module failed to converge with input patterns of Case II. As opposed 
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to failure of Case II in the self-learning simulation, trained NN based connection model 

could be obtained with input patterns of Case I. 

 Based on the observations, the mechanism in the auto-progressive training can be 

attributed to two important concepts which are ‘directionality’ and ‘consistency’ of the 

NN based connection model. The directionality is associated with building the trained 

NN data base by stress resultant data from Step I and displacement data from Step II as in 

Figure 5.13.  As such, the NN based connection model can be gradually trained to follow 

the realistic behavior of connections. On the other hand, the consistency is associated 

with calculating the current internal resisting forces using the independent input pattern 

as in 2) of Figure 5.12. It consists of the stress resultants and displacements calculated in 

the current iteration module, that is, either Step-I or Step-II only. The detailed numerical 

procedures within NN based connection model package is illustrated in Figure 5.12. 
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*Superscript ‘a’ means that the value is calculated in Step I (FEM-A)
*Superscript ‘b’ means that the value is calculated in Step II (FEM-B)
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*Superscript ‘a’ means that the value is calculated in Step I (FEM-A)
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Figure 5.12 Numerical Procedure for NN based Connection Model in Self-learning 
Simulation 
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Figure 5.13 Building of Training Data Base during Self-learning Simulation 



 153

 

 The observation implies that Case I establishes better algorithmic formulation to the 

NN based connection model than Case II with large load step size. Therefore, Case I with 

standard Newton-Raphson iterative scheme is used throughout this dissertation. Even 

though other parameters relating to NNs can affect the performance of the NN based 

model, the effect of the other parameters are minor and they are inherent parameters 

when NN is used in material constitutive modeling. Such parameters include scale factors, 

number of neurons in hidden layers, number of epochs for training. 

 

5.4 Self-Learning Simulation with Experimental Data 

In this example, self-learning simulations are carried out with real experimental data on 

half of a two-story steel frame with semi-rigid connections.  

 

5.4.1 Testing of Semi-Rigid Frame and Its Observations 

The tested structure introduced in section 4.5.3 is used in the self-learning simulation 

(Elnashai, et al. 1998; Takanashi, et al. 1992). The frame with top-and-seat-angle-with-

double-web-angle (TSADW) connections was tested under a cyclic loading with a static 

testing procedure. The test (SRB02) was carried out using a hybrid load-displacement 

control procedure to simulate the first mode response. The second floor actuator was used 

to impose a horizontal displacement history and the actuator restoring force was 

measured. It was used to drive the first floor actuator so that the ratio of actuator forces at 

the second and the first floor was maintained at 2:1. This could ensure the first-mode-
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dominated response during the testing. The testing was paused several times at the zero 

force position for allowing visual inspection of the connection components. Interrupt of 

testing could be one of the sources of uncertainties and variations in the observed 

responses. 

 According to the test results on SRB02, pinching of the force-displacement 

hysteresis loop was observed at the displacements larger than 8 cm because of yielding 

and separation of connection angles. However, the test results showed very stable 

hysteretic behavior up to the end of the testing.  

 

5.4.2 Self-learning Simulation with NN based Connection Model 

Based on the observations from the test, two finite element (FE) models with NN models 

are tested. The first FE model consists of three NN based connection models placed at the 

locations of the connections and column base as shown in Figure 5.14. The three NN 

models are independently trained during self-learning simulations, that is, they do not 

share training data base with one another. The second FE model consists of six NN based 

connection models and they are classified into three NN groups according to sign of 

bending moments and their magnitudes as shown in Figure 5.15. Two control points at 

the ends of beams are used to impose the displacement and force boundary conditions. 

Total 38 three-dimensional beam-column elements are used in the model. For the 

simulations, the geometrical nonlinearity is considered. In the case of the first FE model, 

total number of degrees of freedom is 97 and 88 before and after constraining degrees of 

freedom at the nodes of connections, respectively. The material is defined by Young’s 

modulus of 2.08x108 (kN/m2) and poisson ratio of 0.3. 
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Figure 5.14 Nonlinear Finite Element Model I for Self-Learning Simulation 
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Figure 5.15 Nonlinear Finite Element Model II for Self-Learning Simulation 
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The force and displacement measurements from the experiment are used in Step-I and 

Step-II, respectively. The parameters used in the auto-progressive training of the self-

learning simulation are listed in Table 5.4.  

 

Table 5.4 Parameters used in Self-learning Simulation 

 Parameters used in Self-learning Simulation 
Number of NN Pass tried 2 

Number of auto-progressive cycles 
in each load step 3 

Tol_avg 0.05 Criteria for the auto-progressive 
cycle Tol_max 0.05 

NN architecture 
NN Group 1: {4-15-15-1} 
NN Group 2: {4-15-15-1} 
NN Group 3: {4-15-15-1} 

Scale factors used abs(θn, θn-1, Mn-1,ςn,Mn) 
<  [1.5, 1.5, 800.0, 230.0, 800.0] 

 

Total number of load steps was 455. Before starting the self-learning simulation, a set of 

pre-training data are generated assuming the linear elastic rotational behavior of 

connections. For the FE model I, the range of moments in the pre-training data set is 

between -5.0 (kN-m) and +5.0 (kN-m) and that of rotations is between -0.000359 (Rad) 

and 0.000359 (Rad). For the FE model II, the ranges are -15.0 (kN-m) ~ +15.0 (kN-m) 

and -0.0014695 (Rad) ~ +0.0014695 (Rad), respectively. Total two NN Passes are carried 

out. The trained NN based connection models obtained from the self-learning simulations 

are used in the following static forward analysis. 

 The FE model I with rigid and bilinear connection behavior is used for comparisons. 

A comparison of Figure 5.16 and Figure 5.17 proves the importance of accurate modeling 

of nonlinear behavior of connections. For the bilinear model, an initial stiffness of 7200.0 

(kN-m/rad), a hardening stiffness of 1235.38 (kN-m/rad) and a rotation at yield point of 
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0.004 (Rad) are assumed. On the other hand, a self-learning simulation is carried out with 

the FE model I to obtain NN based connection models. Results from static forward 

analysis with the NN models, as opposed to that from analytical models, are showing 

better agreement with experimental results than other analytical models for connections. 

Figure 5.18 and Figure 5.19 are showing force-displacement hysteretic curves from the 

static forward analysis with the model obtained from self-learning simulations up to NN 

Pass 1 and NN Pass 2, respectively. 
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(a) Force-Displacement at the First Floor  
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 (b) Force-Displacement at the Second Floor 

Figure 5.16 Force-Displacement Hysteresis with Rigid Connection (FE Model I) 
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(a) Force-Displacement at the First Floor 
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 (b) Force-Displacement at the Second Floor 

Figure 5.17 Force-Displacement Hysteresis with Bilinear Model for Connections (FE 
Model I) 
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(a) Force-Displacement at the First Floor 
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(b) Force-Displacement at the Second Floor 

Figure 5.18 Force-Displacement Hysteresis from Static Forward Analysis with NN 
Models Trained up to NN Pass 1 (FE Model I) 
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(a) Force-Displacement at the First Floor  
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 (b) Force-Displacement at the Second Floor 

Figure 5.19 Force-Displacement Hysteresis from Static Forward Analysis with NN 
Models Trained up to NN Pass 2 (FE Model I) 

 

Apparently, the NN based connection models are representing even pinching effect in the 

hysteretic curves which could not be properly represented by the bilinear model. 

Comparing the results from NN Pass 1 and NN Pass 2, there is obvious improvement in 
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the hysteretic curves. In particular, it is worthwhile to mention that sufficiently 

reasonable accuracy can also be obtained even with NN based models which are auto-

progressively trained up to the first NN Pass. The deformed shape and bending moment 

diagram at load step 379 from the static forward analysis are illustrated in Figure 5.20. 

 

    

(a) Deformed Shape       (b) Bending Moment Diagram 

Figure 5.20 Deformed Shape and Bending Moment Diagram from Static Forward 
Analysis with NN based Connection Models 

 

 A self-learning simulation with the FE model II was also carried out to obtain the 

NN based connection models. Using the obtained models, a static forward analysis was 

conducted under force boundary conditions. As shown in Figure 5.21, a comparison of 

the moment-horizontal displacements for experimental data and the static forward 

analysis verifies that the self-learning simulations can capture the local nonlinear 

connection behavior from test measurements. 
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(a) Moment-Horizontal Displacement of Semi-rigid Connection at the Second Floor 
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(b) Moment-Horizontal Displacement Hysteretic Curve at Location ‘c’ 

Figure 5.21 Comparisons between Experimental Data and NN based Connection 
Model from Self-learning Simulation (FE Model II) 

 
 One of the unique advantages of NN based connection models from self-learning 

simulation is that it can learn realistic experimental observations which may include 

pinching in hysteresis, yielding, buckling of connecting elements and any other 

destabilizing effects. The local behavior at connections we are interested in can be 
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masked at the beginning of simulations and only global responses of tested structures at 

control points are required to auto-progressively train the NN based connection model. 

Moreover, the obtained training data base from the self-learning simulation can be 

continuously updated with new experimental data available. 

 

5.5 Further Research and Applications of Self-Learning Simulation 

In the current application with lumped spring element approach, further research is 

required to have the NN based model evolve to the actual local behaviors because there 

could be multiple combinations of the trained NN based models that produce a single 

global response given. For resolving this non-uniqueness problem in the solution, more 

refined model such as a component-based model is suitable whereby the NN based model 

represents uni-axial inelastic hysteretic behavior of connecting components. There are 

unresolved uncertainties in component level because contributions of the failure modes in 

component level to the connection behavior are dependent on various loading scenario 

and construction quality of connections. It is also noteworthy that understanding of the 

connection and global behavior is more important than the component behavior in 

practical applications. 

 The self-learning simulation with the NN based inelastic hysteretic model opens up 

vast applications in earthquake engineering. Beyond its application in beam-column 

connections, any structural and geotechnical component can be modeled by the NN based 

inelastic hysteretic model and the self-learning simulation can be carried out to extract 

training data for the models as long as experimental data are provided. The trained NN 

based model can be updated with new set of experimental data and the NN based model 
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is suitable for cases with noisy structural test data because of its fault tolerance. For 

example, the proposed modeling approach to inelastic hysteretic behavior of structures 

can be incorporated with on-line hybrid simulation and testing because measured force 

and displacement data from quasi-static testing under earthquake loading can be directly 

used in self-learning simulation. The predictive and generalized capability of the NN 

based model can also be used for further development of testing algorithm in the context 

of expanding capability of on-line hybrid simulation and testing. 

 

5.6 Conclusions 

In this Chapter, self-learning simulation methodology, as a novel modeling approach to 

inelastic hysteretic behavior of beam-column connections, has been proposed.  

Performances of the self-learning simulation have been verified with synthetic 

experimental data. The example with synthetic experimental data has two-fold objectives. 

The first objective is to investigate the effect of the algorithmic formulation using the NN 

based model on the performance of self-learning simulation. For the purpose, two 

algorithmic formulation methods in calculating tangent stiffness matrix have been tested 

in self-learning simulation. The second objective is to investigate the sensitivity to load 

step sizes of the two methods. For this purpose, larger load step sizes are applied to the 

two algorithmic formulation methods and it was found out that the calculation of the 

tangent stiffness using measured forces from Step-I and measured displacement from 

Step-II gave stable convergence in auto-progressive training although it needs more 

iterations than the opposed method. Even though calculation of tangent stiffness using 

force and displacement from either Step-I only or Step-II only gave less number of 
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iterations, not only was it observed that it can mislead the NN based model during 

training but also self-learning simulation failed with larger load step size due to failure in 

convergence. Therefore, further research is needed to investigate the theoretical stability 

in convergence with the algorithmic formulation using the NN based connection model in 

self-learning simulation. From the testing in this report, it is recommended to use the 

formulation method of Case I for successful self-learning simulation in terms of stable 

convergence and accuracy.   

 After the investigation, actual experimental data have been used in self-learning 

simulation. From the simulation, unique advantages of the self-learning simulation have 

been shown through comparisons with analytical connection models such as rigid and 

bilinear connection model.  
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CHAPTER 6 GENERALIZED HYBRID NEURAL 
NETWORK BASED INELASTIC HYSTERETIC MODEL 

6.1 Introduction 

Capacity of beam-column connections plays an important role in determining the global 

response of structural systems. In current design codes, connections that can transfer 20 

% to 90 % of moment capacity of joining members are classified into partially restrained 

connections. Except two extreme cases, that is, fully rigid connections and pinned 

connections, most of the connections used in practice are classified into partially 

restrained connections. Because of the complexity in geometrical properties and 

configurations of connections, moment-rotation relationships of the partially restrained 

connections are highly nonlinear and they are very much dependent on design parameters 

such as beam depth, thickness of components and bolt diameter, etc. In order to design 

connections, the non-linear moment-rotation curve from experiments or verified 

analytical models is required in current design codes. In highly seismic zones, a cyclic 

behavior of the connections is also very important for a seismic performance evaluation 

of structures. Although the correlation between design parameters and capacity of 

connections subjected to the cyclic loading has been sufficiently interpreted through 

experiments, further research on generally accepted inelastic hysteretic model for beam-

column connections are still required. 

 Neural network (NN) is a massively parallel processor that can store experiential 

knowledge and make itself available for later use. It features adaptive learning, self-

organizing capability during training and fault imprecision during applications. The 

biggest advantage of using NNs is that it can solve problems that are too complex for 
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conventional methods; problems that do not have an algorithmic solution or for which an 

algorithmic solution is too complex to be found. As aforementioned, it has been proved 

that there is obvious correlations between design parameters and capacities of beam-

column connections under monotonic and cyclic loading (FEMA-355D 2000). While it is 

almost impossible to quantify the correlation between the design parameters and dynamic 

behavior of beam-column connections with any conventional methodology, the NN with 

its remarkable capability to extract essential information from complicated and/or 

imprecise data can be applied to the quantification.  

 The application of the NN in prediction of the cyclic connection behavior has been 

very rarely researched. In 1995, the NN was used to predict the moment-rotation curve of 

single web beam-column connections (Abdalla and Stavroulakis 1995). In 1997, 

Anderson et al. also used the NN to predict a bilinear approximation of the moment-

rotation curve of minor axis end-plate beam-column connections (Anderson, et al. 1997). 

In 1997, Stavroulakis et al. proposed a two-stage NN approach for the elasto-plastic 

analysis of steel structures with semi-rigid connections. In the approach, the NN is 

trained to predict moment-rotation curves of connections subjected to monotonic loading 

only and the structural analysis problem is reformulated as a quadratic programming 

problem with which ordinary structural design engineers are unfamiliar. In 2004, Sakla 

used the NN to predict the load-carrying capacity of eccentrically loaded single-angle 

struts (Sakla 2004). Nonetheless, the research on the application of the NN in the 

modeling of complex cyclic behavior of connections is still in its infant stage.  

 In this chapter, a generalized hybrid neural network (GHNN) based inelastic 

hysteretic connection model is proposed. The GHNN based connection model is an 
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extension of the NN based cyclic material model proposed in this report toward its full 

practical applications in earthquake engineering. The identified design variables that 

significantly affect failure mechanisms of connections are included as inputs to a physical 

principle based module whereby important mechanical variables defining capacity of 

connections are calculated as outputs from the design variables using principle of 

mechanics or empirical equations. The physical principle based module is combined with 

the NN based cyclic material model so that the complex dynamic behavior of connections 

can be predicted from design variables and different loading histories. In order to validate 

the proposed GHNN based connection model, extended-end-plate connection without 

column stiffeners is chosen and its design variables are generated using Latin Hypercube 

Sampling technique to ensure its uniform distribution of variables in multivariate design 

space. Since there is few comprehensive experimental data on dynamic behavior of the 

given connection, an empirical model, Frye and Morris’ polynomial model (Frye and 

Morris 1975), is employed to generate abundant moment versus rotation curves with 

different design variables. According to a series of systematic testing, the proposed model 

is shown to have remarkably generalized performance, which means that it can 

reasonably response to  totally new set of situations with different design variables and 

even different loading history. Considering use of the model in general finite element 

codes, the testing is conducted in recurrent mode in which the earlier prediction of 

moment is fed back to input for prediction of moment at next time step. 
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6.2 Basic Concept of the Proposed Model 

The basic concept about the GHNN based inelastic hysteretic connection model can be 

described with respect to information flow from design variables through mechanical 

parameters and displacement vector to the end of stress resultants vector as shown in 

Figure 6.1. The stress resultants of the connection element can be expressed as a function 

of design variables (e.g. size of the joining members, thickness of components and bolt 

diameter, etc.) and deformation vector of the element. The mathematical function for the 

stress resultant vector can be expressed as follow. 

 ( )(t) (t),=F U DVF  (6-1) 

where DV indicates a vector of design variables; U a displacement vector and F a stress 

resultant vector. Many experimental observations manifest the functional mapping in 

equation (6-1). For instance, plastic rotation of beam-column connections is significantly 

affected by beam depth (FEMA-355D 2000) and the stress resultant actions certainly 

depend on deformations of the connection according to principle of mechanics. Therefore, 

the design parameters are considered as variables that affect the cyclic behavior of 

connections. However, the design variables that is mostly expressed in terms of 

geometrical dimensions are not adequate for directly quantifying the stress resultant-

displacement states of the connections because their effects on the capacity of 

connections is not obvious, for example, the increase of end plate thickness can weaken 

or strengthen the capacity and ductility of connections. Therefore, mechanical parameters 

are introduced to consider the effect of design variables on the capacity of connections. 

Then the equation (6-1) can be rewritten as follow.  
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 ( ) ( )( )
( )

(t) (t), (t),= =

=

F U MP U DV

MP DV

F F G

G
 (6-2) 

where MP indicates a mechanical parameter vector that is a function of design variables. 

Since the mechanical parameters feature the capacity of connections, using them as 

inputs to NN along with other state variables or internal variables can be considered as 

natural. In summary, two functional mappings can be employed in the information flow 

from design variables to the stress resultant force vector; the first is a mapping G from 

design variable to mechanical parameters and the second is a mapping F  from 

mechanical parameters to the stress resultant vector.  

 

 

Figure 6.1 Information Flow from Design Variables through Stress Resultants in 
GHNN based Inelastic Hysteretic Connection Model 
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According to the summary and Figure 6.1, the first mapping G can be easily obtained by 

using basic principle of mechanics. Therefore, so called physical principle based module 

is constructed first to relate design variables to mechanical parameters. The most 

challenging mapping is the second one F because it should have responsive capability to 

represent any hysteretic behavior of connections. In this report, the NN is used for the 

mapping F  because not only should the mapping be physically responsive to change in 

mechanical parameters and state variables (displacements and stress resultant forces) but 

also it should be responsive to loading scenarios. According to literature survey, any 

conventional technique including mathematical approaches can not realize such a 

dynamic hysteretic model for connections with full performance.  

 

6.3 The Proposed Inelastic Hysteretic Model for Connections 

Following the basic concept on the information flow described in the previous section, a 

generalized hybrid NN (GHNN) based inelastic hysteretic model is proposed whereby 

two hierarchical modules are integrated; one is physical principle based module and the 

other is NN based module. The GHNN based inelastic hysteretic model is as shown in 

Figure 6.2.  Since the design variables and mechanical parameters can be customized to 

any specific connection type and the model can predict dynamic responses of connections, 

the model is called as generalized. Since the model also consists of two modules as 

aforementioned, it is called as hybrid.  
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Figure 6.2 Generalized Hybrid NN based Inelastic Hysteretic Model 
 

Since the behavior of beam-column connections is usually expressed in terms of moment 

and rotation, not only do the input and output variables in the model consist of moment, 

rotational displacement and internal variables related to moment-rotational evolutions but 

also the design variables and mechanical parameters are related to moment-rotational 

capacity of the connections. The equation (6-3) describes the trained GHNN based 

connection model in the common notation for NN applications. 

 { } { }( )n n n 1 n 1 ,n ,n 1 k
ˆM , ,M , , , (DV ,..,DV ) : NN architectureNNM − − θ θ= θ θ ξ Δη G   (6-3) 

 The unique advantage of the GHNN based model is that not only it can reproduce 

complex inelastic hysteretic behavior from experiments but also it can predict hysteretic 

responses of the given connections subjected to totally new design and loading scenario. 

If users have abundant and comprehensive information to train the proposed model, the 

model can be fairly generalized. The generalized feature of the model has two-fold 
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meaning; one is that it responses to new design and loading properly and the other is that 

a suite of libraries of the model for various connection type cans be constructed. 

 

6.3.1 Physical Principle based Module 

The physical principle based module connects a set of design variables to mechanical 

parameters since obvious correlation between design variables and mechanical 

parameters in connection behaviors have been experimentally observed  (FEMA-355D 

2000; Kishi and Chen 1990). Owing to its generalized feature, the physical principle 

based module can be customized to each specific connection type. Specifically, the 

design variables are chosen for each type of connections according to the experimental 

results. In this report, two connection types - extended-end-plate connection and top-and-

seat-angle-with-double-web-angle connection (TSADW) - are chosen to demonstrate the 

performance of the proposed model. In the following section, the design variables chosen 

for the two connection types and mechanical parameters are explained. 

 

6.3.1.1 Mechanical Parameters for Connections 

For the seismic performance of beam-column connections, stiffness, strength and 

ductility are very important factors that should be ensured in the seismic design. They 

have strong correlation with one another. In this report, four mechanical parameters that 

manifest the capacity of connections are determined; 1) initial stiffness, 2) yielding 

moment, 3) failure moment and 4) rotational ductility. They are all essential indexes that 

can represent the capacity of connections. The four mechanical parameters are illustrated 

in Figure 6.3. 
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Figure 6.3 Mechanical Parameters of Physical Principle based Module 
 

 In structural analysis of a building structure with partially restrained connections, the 

rotational stiffness of the connections must be considered with a special model in 

addition to the member stiffness of the beam and column since the connection stiffness 

has considerable impact upon the structural behavior. Therefore, the rotational initial 

stiffness is chosen as one of the mechanical parameters used in the proposed model. 

Moreover, the ductile performance connections are required in highly seismic zones. The 

ductile deformation capacity of connections is a function of yield mechanisms and critical 

failure modes. To ensure the ductile performance of connections before failure, the 

prediction of the yield mechanisms and failure modes and reliable estimate of resistance 

associated with the estimated yield mechanisms and failure modes are required. As 

aforementioned in Chapter 2, there could be many different yield mechanisms and failure 

modes for each connection type. Particularly, the yield moment is associated with the 

geometry of components and the material properties as well. There exist many equations 
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that define yield and failure moment in terms of geometrical and material properties of 

connections (FEMA-355D 2000; Kishi and Chen 1990), Therefore, the yielding and 

failure moment are chosen as the mechanical parameters. In case of TSADW connections, 

the ultimate moment at the column face can be calculated assuming the collapse 

mechanisms in top and seat angles and web angles as shown in Figure 6.4.  
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Figure 6.4 Collapse Mechanism of TSADW connection (Kishi and Chen 1990) 
 

Then the ultimate moment resistance can be calculated as follow. 
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 (6-4) 

Where ls indicates width of the seat angle; lp width of the web angle, ll distance from 

bottom flange of beam to lower edge of web angle; ts thickness of seat angle and other 
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variables are indicated in Figure 6.4. Mpt and Vpt in (6-4) are bending moment and 

shearing force acting on the plastic hinges shown in Figure 6.4. Drucker’s yielding 

criterion can be expressed by the fourth-order equation as follow.  

 4
pt pt2

ot t ot

V Vg 1
V t V

æ ö æ ö÷ ÷ç ç÷ ÷+ =ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
 (6-5) 

where Vot indicates plastic shear capacity of the top-angle leg without coupling. From 

equation (6-5), Vpt can be calculated and Mpt is calculated by Mpt=Vptg2/2. The ductility 

of connections is commonly expressed in terms of the rotational ductility.  The rotational 

ductility is defined as follow. 

 y p u

y y
q

q + q qd = =
q q

 (6-6) 

where θp and θy indicate plastic and yield rotation, respectively. All of the mechanical 

parameters chosen for the proposed model can characterize the capacity of connections 

from yielding through failure. In the following section, design variables used in the 

proposed model for two specific connection types are explained.  

 

6.3.1.2 Design Variables for Connections 

In case of the extended-end-plate connections, flexural resistance of end plate and axial 

resistance of bolts are engaged in the energy dissipation during cyclic behavior. 

According to experimental observation on this type of connections, the more in plastic 

engagement the bolts are, the more hysteretic pinching are amplified. As illustrated in 

Figure 2.2(a), the ductility is very low when bolts are failed. If the end plate is stiffened, 

yield of the beam and good energy dissipation can be ensured as shown in Figure 2.2(c). 
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Therefore, the thickness of end plate and column flange and the diameter of bolts are very 

important design parameters for the extended-end-plate connections. In addition, as 

shown in Figure 6.5, there is strong correlation between capacity and beam depth. 

Therefore, the beam depth is also chosen as one of the design variables for the extended-

end-plate connections.   
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Figure 6.5 Effect of Beam Depth on End-Plate Connection Capacity (Redrawn from 
(FEMA-355D 2000) ) 
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Figure 6.6 Design Variables of Extended-End-Plate Connections 
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The design parameters for the extended-end-plate connection are illustrated in Figure 6.6.  

 In case of TSADW connections, the yield mechanisms are limited to flexural 

yielding of the upstanding leg of the top angle and yielding of the shear panel zone. The 

latter is possible but less unlikely than the former. Since this is a flexible partially 

restrained connection, it provides large amount of plastic rotational capacity compared to 

other stiff partially restrained connection types. Because of its flexibilities, it has not been 

used in highly seismic zone. When other yield mechanisms such as looseness of the bolt 

holes and elongation of the bolts are engaged, it provides less plastic rotation capacity. 

According to the past experimental observations on this type of connections, five design 

variables are selected as illustrated in Figure 6.7. They are thickness of top and seat 

angles, thickness of web angles, width of top and seat angle, distance between flange and 

center of bolts and depth of the joining beam. 
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Figure 6.7 Design Variables of Top-and-Seat Angle Connections 
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6.3.2 Neural Network based Module for Modeling Hysteretic Behavior 

The NN based cyclic material model proposed in this report is employed for establishing 

the functional mapping F from state and mechanical variables to stress resultants. The 

two internal variables also play an important role in learning the hysteretic behavior as 

demonstrated in Chapter 3. The only difference is that the mechanical variables from the 

physical principle based module are presented as inputs to the NN based module. Since 

the state variables and the mechanical parameters can be directly interpreted in the stress 

resultant space and the evolutions in inelasticity region, the proposed GHNN based 

model can be responsive to the change in mechanical parameters which have strong 

interrelation with design variables of each connection type. The proposed GHNN based 

inelastic hysteretic model for connection is illustrated as in Figure 6.8. 
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Figure 6.8 Generalized Hybrid NN based Inelastic Hysteretic Model for 
Connections 
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6.4 Validation of the Proposed Model with Experimental Data 

The primary objective of the tests in this section is to verify the performance of the 

proposed model with real and synthetic experimental data of the two most common 

connection types. Since the key advantage of using the proposed model is its capability of 

reproducing complex inelastic hysteretic response of the experimental data, the proposed 

model is tested with earthquake records. The generalized feature of the proposed model is 

also verified with testing of the proposed model under totally new earthquake motions, 

design variables and combinations of them as well. 

 

6.4.1 Extended-End-Plate Connection 

In the test of the proposed model with this connection type, synthetic experimental data 

are used which are artificially generated design variables and generated from polynomial 

model. There are three reasons why the synthetic experimental data are used for testing of 

the proposed model on the extended-end-plate connections. The first reason is because 

most of the past experiments on this type of connections were conducted under 

monotonic loading only. The second reason is because while there are several studies on 

the seismic behavior of the connection type, not only is it unknown whether the rotational 

deformation history includes contribution from the column and the shear panel zone or 

not in some cases but also there are variations in the locations where the rotational 

deformation is measured. The third reason is because standardized beam sections, high 

strength bolts and thickness of plates can hinder the testing of the proposed model under 
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large variations in design variables and mechanical parameters. Therefore, if we use the 

limited real experimental case, the proposed model can be tested into the given narrow 

domain only. 

 

6.4.1.1 Generation of Synthetic Experimental Data 

In order to obtain the design variables which ensure full coverage of the given range, 

Latin Hypercube Sampling (LHS) technique is used (Iman and Conover 1982). LHS 

technique is an efficient sampling method for uncertainty analysis such as variation in 

design spaces. Since the scheme is beyond the topics of this report, it will not be 

explained any more in this section. The basic assumption in LHS is that there is no 

correlation between design variables. Figure 6.9 shows the sampled points in the space of 

the design variables which are generated in the LHS technique. D represents the distance 

between the outermost bolts and t stands for thickness of the end plate and f stands for the 

diameter of the bolts. 

 

 

Figure 6.9 Sampled Points in Design Space by LHS technique (D-t-f) 
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Table 6.1 Sampled Designs of Extended End Plate Connection  

Label of 
Samples D (mm) t (mm) f (mm) Label of 

Samples D (mm) t (mm) f (mm) 

1 908.75 12.93 37.85 18 825.54 28.08 36.94 
2 812.34 62.98 26.21 19 877.24 61.25 30.80 
3 840.60 51.49 26.51 20 610.39 18.28 33.25 
4 745.77 30.60 17.23 21 760.79 45.13 16.77 
5 834.84 39.64 33.88 22 792.82 22.83 23.79 
6 669.70 9.59 22.39 23 710.42 21.59 21.53 
7 622.06 53.82 27.60 24 730.56 28.76 18.94 
8 638.93 58.30 23.54 25 781.94 56.75 20.12 
9 674.35 5.25 31.64 26 862.55 41.16 20.70 
10 797.28 47.88 12.93 27 660.76 35.32 34.77 
11 742.27 26.18 28.47 28 899.27 33.45 18.34 
12 721.53 42.40 15.23 29 770.93 48.09 29.93 
13 702.82 8.06 29.28 30 880.34 20.59 36.08 
14 857.52 52.01 32.38 
15 686.38 15.27 13.72 
16 608.36 11.46 24.62 
17 642.95 37.48 15.37 

600.0 mm ≤ D ≤ 910.0 mm 
5.0 mm ≤ t ≤ 63.5 mm 

12.7 mm ≤ f ≤ 38.1 mm 

 

Table 6.1 shows numerical values of each design variable generated through LHC 

sampling technique.  

 The moment-rotation curves for the extended-end-plate connection are obtained from 

an empirical equation proposed by Frye and Morris (Frye and Morris 1975). The rotation 

of the connection is expressed as an odd-powered polynomial function.  

 3 5
1 2 3C (PM) C (PM) C (PM)q= + +  (6-7) 

Where M and θ are moment and rotation, respectively; C1, C2 and C3 are curve-fitting 

parameters; P is a standardized parameter which is a function of the significant 

geometrical parameters such as connecting member size, plate thickness, etc. The 

parameters corresponding to the extended-end-plate connection are summarized in Table 

6.2.  
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Table 6.2 Parameters for Extended-End-Plate Connection 

C1 C2 C3 P # of 
Test 

Maximum Deviation of 
Standardized Curve from 

Experimental Curve 
1.83 x 10-3 -1.04 x 10-4 6.38 x 10-6 P=D

-2.4
t
-0.4

f
1.1

 12 3% 
D : depth of beam  (in) 

t : thickness of end plate (in) 
f : diameter of bolt (in)

 

For each sampled set of design variables, mechanical parameters are determined as 

follow. According to regression analysis of test results (FEMA-355D 2000), the 

achievable plastic rotation by the extended-end-plate connection type can be expressed as 

follow. 

 pmean b0.0607 0.0013 dq = - ×  (6-8) 

where db indicates depth of beams. The unit for db is inch and θpmean radian. The plastic 

rotational capacity is the rotation up to the point when significant losses in strength and 

stiffness start. From the mean value of the plastic rotation, the ultimate moment can be 

calculated using Equation (6-7). The initial stiffness can be obtained from Equation (6-7) 

as follow.  

 
i

1

dM 1K
d C P

= =
q

 (6-9) 

Then the yield moment is assumed to be 2/3 of ultimate flexural strength following the 

specification in Eurocode 3 in its Annex J. The rotational ductility is calculated by 

Equation (6-6). The total 30 sampled moment-rotation curves are illustrated in Figure 

6.10. 
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Figure 6.10 Moment-Rotation Curves with Sampled Design Variables 
 

6.4.1.2 The Performance under Cyclic Loading 

In this test, the performance of the proposed model is evaluated under cyclic loading. To 

generate the cyclic moment-rotation curve, the polynomial model is implemented into the 

finite element code developed for this report. Young’s modulus used for steel is assumed 

to be 29,753.3 (ksi) and poisson ratio is assumed to be 0.3. The finite element model and 

the cyclic loading used are illustrated in Figure 6.11. The GHNN based model is trained 

with total 28 moment-rotation curves and it is tested with new Test-22 and Test-28 under 

the same cyclic loading.  
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Figure 6.11 Finite Element Model of Column with End-Plate Connection 
 

Table 6.3 shows the training information of the proposed model. During the training, one 

neuron per each hidden layer is added and the total number of epochs in training is 

20,000. The testing of the proposed model is conducted in recurrent mode considering 

use in general finite element codes. The equation (6-10) describes the trained GHNN 

based model. 

 { } { }( )n NN n n 1 n 1 ,n ,n
ˆM , ,M , , , (D, t, f ) : 9 25 25 1M − − θ θ= θ θ ξ Δη − − −G   (6-10) 

 

Table 6.3 Training Information for Cyclic Loading 

 Number of Epochs used in Training NN Architecture Average Error 
in Training 

NN based 
Model  20,000 {9-25-25-1} 5.24 x 10-7 
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Figure 6.12 Predicted Cyclic Moment-Rotation Curve of Design 22 
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Figure 6.13 Predicted Cyclic Moment-Rotation Curve of Design 28 
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Figure 6.10 and Figure 6.13 show the predicted cyclic moment-rotation curves of new 

test-22 and test-28, respectively. According to the test results, it is evidenced that the 

proposed model can accurately predict the flexural response of completely different 

designs from the trained designs. 

 

6.4.1.3 The Performance under Earthquake Loading 

In this test, the performance of the GHNN based inelastic hysteretic model is 

demonstrated under earthquake ground records. The dynamic hysteretic moment-rotation 

curves of the sampled designs are calculated by nonlinear dynamic analysis of a 

cantilever column as shown in Figure 6.14. The model has total 9 degrees of freedom 

(three degrees of freedom per each node). The tangent stiffness of the rotational spring 

element for the column base is derived from the polynomial model in Chapter 2 and non-

pinching cyclic behavior is assumed.  

 In order to verify fully generalized feature of the proposed model, new ground 

motion is also employed when the trained GHNN based model is tested. The ground 

motions to be used in training the proposed model are selected from an ensemble of 20 

historical strong ground motions (Christopoulos, et al. 2002; PEER). To select ground 

motions that form envelopes of the group of the response spectrum, the elastic response 

spectra are drawn in Figure 6.15. Eventually, four records (Record 1, Record 2, Record 4 

and Record 11) out of the 20 ground motions are selected and one new record (Record 5) 

is selected as shown in Figure 6.16 and Figure 6.17, respectively.  
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Figure 6.14 Dynamic Model of Column with End-Plate Connection 
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Figure 6.15 Elastic Response Spectra of Ground Motions Considered (5% damping) 
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(a) Superstition Hills (Brawley), 1987 
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 (b) Superstition Hills (El Centro Imp. Co. Cent), 1987 
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(c) Northridge (Beverly Hills 14145 Mulhol), 1994 
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(d) Loma Prieta (Capitola), 1989 

Figure 6.16 Ground Motions used for Generating Training Data 
 

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20Time (sec)

A
cc

el
er

at
io

n 
(g

)

Record 5

 

Figure 6.17 New Ground Motion used for Testing the Proposed Model 
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Figure 6.18 Selected Designs for Generation of Training Data 
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On the other hand, four sampled tests (Test-5, Test-9, Test-10 and Test-28) are selected 

to training the proposed model and Test-4 is chosen for testing the proposed model. 

Finally, the four tests and four ground motions are combined to make total 16 

combinations. Training information of the proposed model is summarized in Table 6.4. 

Total number of training data is 84,744. The equation (6-11) expresses the trained GHNN 

based model. 

 { } { }( )n NN n n 1 n 1 ,n ,n
ˆM , ,M , , , (D, t, f ) : 9 50 50 1M − − θ θ= θ θ ξ Δη − − −G   (6-11) 

After training the model, testing of the trained model is carried out with a new 

combination of test 4 and ground motion record 5. 

 

Table 6.4 Training Information for Earthquake Loading 

 Number of Epochs used in Training NN Architecture Average Error 
in Training 

NN based 
Model  16,000 {9-50-50-1} 2.10 x 10-7 

 

After training the proposed model, it is tested with totally new situation whereby Test-4 

and Record 5 are selected. The responses of the GHNN based inelastic hysteretic model 

to new set of design variables and a new ground motion are illustrated in time and 

frequency domain as illustrated in Figure 6.19 and Figure 6.20, respectively. 
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Figure 6.19 Time History of Predicted Moment by GHNN based Inelastic Hysteretic 
Model 
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Figure 6.20 Comparison between Reference Case and GHNN based Model in 
Frequency Domain 
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Figure 6.21 Comparison of Moment-Rotation Hysteresis between the Reference 
Case and GHNN based Model 

 

The GHNN based inelastic hysteretic model is also shown to be reasonably responsive to 

the new combination of the design and ground motion in moment-rotation hysteresis 

curve as shown in Figure 6.21. 

 

6.4.2 Top-and-Seat-Angle with Double Web Angle Connection 

In this example, the verification of the GHNN based model is carried out with real 

experimental data with TSADW connections. Steel Connection Data Bank (SCDB) 

program provides the past testing data of various connection types (Chen and Toma 

1994).  Five test data are obtained from SCDB program; four of them are for training the 

model and one of them for testing the model. They were all tested in the U.S. in 1985 

(Azizinamini and Radziminski 1989). The top- and seat-angles and web-angles are all 

assembled with high strength bolts. 
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Table 6.5 Test Cases on Top-and-Seat-Angle with Double Web Angle Connection 
Test ID Beam Column Angles Fasteners Tested by 

Test 6 W8x21 W12X58 

Flange Angle: 
6 x 4.0 x 5/16 x 6.0 

Web Angle: 
4 x 3.5 x 1/4  x 5.5 

A325 3/4"D 
13/16” Oversize 

holes 

A.Azizinamini et al. 
(1985) U.S.A 

Test 9 W8X21 W12X58 

Flange Angle: 
6 x 3.5 x 3/8  x 6.0 

Web Angle: 
4 x 3.5 x 1/4  x 5.5 

A325 7/8"D 
15/16" Oversize 

holes 

A.Azizinamini et al. 
(1985) U.S.A 

Test 14 W14X38 W12X96 

Flange Angle: 
6 x 4.0 x 3/8  x 8.0 

Web Angle: 
4 x 3.5 x 3/8  x 8.5 

A325 3/4"D 
13/16" Oversize 

holes 

A.Azizinamini et al. 
(1985) U.S.A 

Test 16 W14X38 W12X96 

Flange Angle: 
6 x 4.0 x 1/2  x 8.0 

Web Angle: 
4 x 3.5 x 1/4  x 8.5 

A325 7/8"D 
15/16" Oversize 

holes 

A.Azizinamini et al. 
(1985) U.S.A 

New 
Test W14X38 W12X96 

Flange Angle: 
6 x 4.0 x 3/8  x 8.0 

Web Angle: 
4 x 3.5 x 1/4  x 8.5 

A325 3/4"D 
13/16" Oversize 

holes 

A.Azizinamini et al. 
(1985) U.S.A 

 

The geometrical properties of the five test cases are summarized in Table 6.5. The 

moment-rotation curves from the five test cases are illustrated in Figure 6.22. 

 

6.4.2.1 Design Variables and Mechanical Parameters 

The design variables determined for the TSADW connection type are shown in Table 6.6. 

For each test case, the ultimate connection moment (Mu) is calculated from the simple 

mechanics and mechanism as explained in section 6.3.1.1. Like in extended-end-plate 

connection, the cyclic behavior is assumed to show non-pinching moment-rotation 

relationship following the polynomial model in section 2.3.1.3. Then the plastic rotation 

is calculated from equation (6-7) using the polynomial model. As done in the extended-
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end-plate connections, the yield moment is assumed to be 2/3 of the ultimate moment 

capacity and the initial rotation is also calculated by equation (6-9).  

 

Table 6.6 Design Variables and Material Properties of Five Test Cases 

Test ID d (in) t (in) tc (in) la (in) g (in) Material (ksi) 

Test 6 8.25 0.31 0.25 6.0 2.125 Fy=40.65 
Fu=68.43 

Test 9 8.25 0.38 0.25 6.0 1.5625 Fy=39.55 
Fu=67.95 

Test 14 14.13 0.38 0.38 8.0 2.125 Fy=40.65 
Fu=68.43 

Test 16 14.13 0.50 0.25 8.0 2.0625 Fy=40.65 
Fu=67.95 

New Test 14.13 0.38 0.25 8.0 2.125 Fy=40.65 
Fu=68.43 
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Figure 6.22 Moment-Rotation Curves from Experimental Results 
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 Then the four mechanical parameters are calculated as shown in Table 6.7. As 

expected, the calculated rotational ductility is larger than the ones of the extended-end-

plate connections.  

 

Table 6.7 Mechanical Parameters for Test Cases 

Test ID Ki (kip-in/rad) My(kip-in) Mu(kip-in) δθ 
Test 6 128709.233 162.747 244.120 21.231 
Test 9 239443.843 315.247 472.870 23.957 
Test 14 456320.959 619.435 929.152 26.290 
Test 16 555425.939 793.186 1189.779 30.751 

New Test 385649.297 489.527 734.290 21.476 
 

6.4.2.2 The Performance under Earthquake Loading 

For earthquake ground motions, the same ground motions used in the extended-end-plate 

connections are used for training and testing the GHNN based model. To generate 

training data corresponding to each test case, nonlinear dynamic analysis is conducted 

with the finite element model illustrated in Figure 6.23. The finite element model consists 

of total 9 degrees of freedom, that is, 3 nodes and 3 DOF (dx, dy and rz) per node. 

Distributed mass is assumed for the beam-column element and lumped mass is at the top 

of the column. 
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Figure 6.23 Dynamic Model of Column with TSADW connection 
 

The natural periods of the first three modes of each test case are calculated as shown in 

Table 6.8. For the calculation, the rotational stiffness at the connection is assumed to be 

rigid.  

 

Table 6.8 Natural Periods with Rigid Connection Assumption 

Test ID 1st Mode (sec) 2nd Mode (sec) 3rd Mode (sec) 
Test 6 0.9769  0.0418 0.0354 
Test 9 0.9769  0.0418 0.0354 
Test 14 0.7401 0.0533 0.0211 
Test 16 0.7401 0.0533 0.0211 

New Test 0.7401 0.0533 0.0211 
 

From the four test cases and four ground motions, total 16 combinations are built to 

generate the training data. The moment-rotation hysteretic curves for the 16 combinations 

are illustrated in Figure 6.24. Because of different geometrical properties and ground 

motions, the hysteretic curves showed different paths from one another. The horizontal 
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displacement at the top also showed various time histories due to the variations. Then, the 

equation (6-12) describes the trained GHNN based model.  

 { } { }( )n NN n n 1 n 1 ,n ,n c a
ˆM , ,M , , , (d, t, t , l ,g) : 9 50 50 1M − − θ θ= θ θ ξ Δη − − −G   (6-12) 

The training information is summarized in Table 6.9. The scale factor used in the training 

is 0.15 for all the inputs to the model. 

 

Table 6.9 Training Information for Earthquake Loading 

 Number of Epochs used in Training NN Architecture Average Error 
in Training 

NN based 
Model  20,000 {9-50-50-1} 6.189 x 10-7 

 

For the purpose of verification, two new combinations of geometric properties and 

ground motion are used, which are new test/Record 4 and test14/new record.  
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(a) Test 6-Record 1      (b) Test 6-Record 2 
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(c) Test 6-Record 4   (d) Test 6-Record 11 
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(e) Test 9-Record 1   (f) Test 9-Record 2 
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(g) Test 9-Record 4   (h) Test 9-Record 11 
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(i) Test 14-Record 1   (j) Test 14-Record 2 
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 (k) Test 14-Record 4   (l) Test 14-Record 11 
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(m) Test 16-Record 1   (n) Test 16-Record 2 
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 (o) Test 16-Record 4   (p) Test 16-Record 11 

Figure 6.24 Moment-Rotation Hysteresis from 16 Combinations for Training 
GHNN based Model 
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Figure 6.25 Time History of Horizontal Displacement at the Top 
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Figure 6.26 Time Histories of Predicted Moments by GHNN based Model 
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Figure 6.27 Moment-Rotation Hysteretic Curves of New test/Record 4 and Trained 
GHNN based Model 

 



 203

0

200

400

600

800

1000

1200

1400

0.01 0.10 1.00 10.00
Frequency (Hz)

Fo
ur

ie
r A

m
pl

itu
de

 (k
ip

-in
)

GHNN based Connection Model

New Test-Record4

0

200

400

600

800

1000

1200

1400

1600

0.01 0.10 1.00 10.00
Frequency (Hz)

Fo
ur

ie
r A

m
pl

itu
de

 (k
ip

-in
)

GHNN based Connection Model

Test14-New Record

 

Figure 6.28 Fourier Amplitudes of Moment of GHNN based Model  
 

Figure 6.26, Figure 6.27 and Figure 6.28 display moment predictions of the trained model 

at the connection subjected to new combinations of geometrical properties and 

earthquake records in time history, moment-rotation hysteretic curve and Fourier 

amplitude in frequency domain, respectively. It has been verified that the trained GHNN 

based model can give reasonable predictions of moment and responsive to variations in 

both geometrical parameters of connecting elements and earthquake records. The 
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proposed model opens up a new approach to design-based numerical model for hysteretic 

behavior of connections as following. 

 

6.5 Further Applications of the Proposed Model 

The trained GHNN based inelastic hysteretic model contains essential information on 

dynamic hysteretic behavior of connections. Because the model includes one prehistory 

point on moment-rotation curve, it has information on the path dependent connection 

behavior. Owing to the internal variables introduced in Chapter 3, the model can also 

learn dynamic evolutions in the moment and rotation space under earthquake loading 

conditions. Additionally, the model has a set of mechanical variables which stand for the 

load-carrying capacity of connections in the design point of view.  This intensive 

information within connection weights of the model can open up many promising 

applications in many engineering problems. Moreover, the model can be easily 

implemented into nonlinear finite element analysis code for predicting the system 

response.  

 For modeling of the inelastic hysteretic behavior of connections, a set of libraries for 

many connection types can be constructed from available experimental results. The 

previous examples with two common connection types demonstrate part of this 

application. The self-learning simulation in Chapter 5 will be able to help generating 

necessary training data for the proposed model from structural tests. Since the proposed 

model requires design variables and it is responsive to the change in geometrical 

properties, the proposed model can be also used in design optimization based on inelastic 

hysteretic behavior. Furthermore, the GHNN based model can become a prototype model 
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that can be customized to any structural-geotechnical component beyond the application 

to beam-column connections.  

 

6.6 Conclusions 

Generalized hybrid neural network (GHNN) based inelastic hysteretic model has been 

suggested for modeling of beam-column connection behavior. The advantage of the 

model is that it accepts information from design variables through a separate physical 

principle based module and link the information to inelastic hysteretic model for 

reproducing the experimental data. Beyond simple reproduction of the experimental data, 

the model has been verified to be reasonably responsive to the changes in the design 

variables and ground motions.  

 For numerical examples, the model was verified with synthetic and experimental 

data on two common connection types; the extended-end-plate connection and top-and-

seat-angle-with-double-web-angle connection. Beyond the application to beam-column 

connections, other promising applications were discussed. 
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CHAPTER 7 SUMMARY OF RESEARCH 

7.1 Summary 

In this report, a novel modeling approach to hysteretic behavior of beam-column 

connections has been proposed based on self-learning simulation and a generalized 

hysteretic model for connections has been suggested based on the proposed cyclic 

material model. To conduct development of the models and methodology, conventional 

modeling approaches were revisited and recommendations to improve accuracy and 

practicality were addressed.  

 

 For the application in earthquake engineering, a new neural network (NN) based 

cyclic material model has been proposed. Its distinct advantage is that it can learn and 

reproduce any complex hysteretic behavior of materials or structural members under 

earthquake loadings. Moreover, its numerical implementation is much easier than any 

other phenomenological model since it does not need to have interaction equations or 

plastic potential. The model has new internal variables as inputs to expedite learning of 

hysteretic behavior under earthquake loadings. The essential role of the variables is to 

provide a necessary condition for establishing a mathematical functional relationship 

between input and output values, which is one-to-one or many-to-one mapping. 

Performances of the model were verified with experimental data and simulated testing 

data. The proposed model was also shown to learn the cyclic plasticity behavior of metal 

in non-uniform state of multi-dimensional stresses. 
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 For a nonlinear analysis considering inelastic behavior of connections, a nonlinear 

finite element code has been developed using three-dimensional beam-column element 

and plastic hinge approach for connections. Based on the Updated Lagrangian 

formulation, geometric nonlinearity was also implemented for large displacement 

analysis. The advantage of the NN based connection model was demonstrated with a 

series of numerical examples. The capabilities of the model in accuracy and 

generalization were demonstrated in a nonlinear dynamic analysis of a frame with semi-

rigid connections under earthquake loading. Moreover, the proposed model was shown to 

reproduce behavior of a full three-dimensional finite element model under non-

proportional cyclic loading conditions. Therefore, the accurate local behavior obtained 

from either advanced computational models or experimental data can be combined with 

simplified frame models. This approach opens up a new advanced simulation method for 

understanding actual effects of the nonlinear connection behavior on the global response. 

 

 To propose a new modeling approach of beam-column connections, a self-learning 

simulation framework has been developed. Its distinct advantage is that it can develop a 

set of NN based connection models using experimental measurements at control points 

over tested structures. In the framework, a dual nonlinear finite element analysis tool was 

equipped with the auto-progressive training algorithm. In particular, the algorithmic 

formulation of the NN based model for self-learning simulation has been investigated to 

suggest better formulation in terms of stability and accuracy. Based on the numerical test 

results, recommendations to improve performances of the self-learning simulation were 

suggested in the context of the algorithmic formulation relating to calculations of tangent 
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stiffness matrices and internal resisting forces. Both synthetic and experimental data were 

employed to verify the proposed modeling approach. It was shown that the NN based 

connection model obtained from self-learning simulations can reproduce realistic 

responses of frames with semi-rigid connections. 

 

 For practical applications of the model developed, it has been extended to a 

generalized hybrid NN (GHNN) based hysteretic model for beam-column connections. It 

consists of two modules; NN based module and physical principle based module. The 

physical principle based module associates design variables with mechanical parameters 

using simple mechanics for yield mechanisms and experimental observations. In the NN 

based module, the mechanical parameters are used as inputs. Eventually, it becomes a 

first-ever dynamic hysteretic model that can be physically responsive to changes in 

design variables and mechanical states in moment-rotation space. The performance of the 

model was validated with two common connection types (extended-end-plate connection 

and top-and-seat-angle-with-double-web-angle connection) using experimental data.  

 

7.2 Concluding Remarks 

Beam-column connections are regions that suffer from severe yielding, local buckling 

and tearing, etc as evidenced in damages from the past earthquakes. Classical plasticity 

theory can not deal with such complex hysteretic behaviors under earthquake loadings. 

Phenomenological models based on regression analysis with curve-fitting technique have 

inherent errors and limitations in dynamic representation of hysteretic behavior of 

connections. From the results of this research, it can be concluded that the NN based 
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cyclic material model is viable and promising for modeling of hysteretic behavior of 

materials both in uniform and non-uniform stress states. Moreover, the self-learning 

simulation methodology equipped with the proposed model provides an innovative 

method for completing modeling task of beam-column connections. The NN based 

connection model, as opposed to conventional models, does not need to introduce any 

idealization, assumption, and simplification in modeling of connections since it can 

directly learn its actual behavior from experimental data. The capability of the NN based 

approach is more than learning of the hysteretic behavior. Therefore, information flow 

from design variables through mechanical parameters was incorporated with the NN 

based model. Its generalized features clearly indicate its promising application in daily 

design process and open up further engineering applications. 

 The following conclusions can be drawn based on the results of these research 

investigations. 

1. The new NN based cyclic material model has superior learning capability of hysteretic 

behavior as compared to conventional NN based material constitutive models whereby 

several recent states of stress-strain are introduced as inputs for capturing nonlinearities 

and path-dependency in the behavior of materials. Owing to the two internal variables 

observable in material testing, significant enhancement could be established in learning 

the hysteretic behavior. 

 

2. The NN based connection modeling approach, as opposed to conventional modeling 

methods such as distributed inelasticity model and stress resultant-based lumped 

inelasticity model, open up a new analysis method which can incorporate actual behavior 
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of beam-column connections from experiments with nonlinear frame analysis. Not only 

can the hysteretic behavior under earthquake loading be represented by the proposed 

model but also the trained model can predict novel behavior that is not included in the 

training data. 

 

3. The self-learning simulation framework can greatly simplify a modeling task from 

structural testing. Since NN is highly flexible and adaptable to new sets of experimental 

data, the NN based connection model and training data obtained from the self-learning 

simulation can be updated with novel experimental data available and reusable for further 

developments, respectively. 

 

4. The GHNN based hysteretic model can be used in structural analysis for daily design 

purposes. A distinct advantage of GHNN based model is its predictive capability even 

with novel earthquake records and geometric properties as validated in this research. In 

particular, the training data obtained from the self-learning simulation can be used to 

develop the GHNN based model for each connection type.  

 

7.3 Future Directions of Research 

The modeling approaches developed in this report are fundamentally different from the 

conventional approaches. The developments of the NN based cyclic material model, self-

learning simulation framework and the GHNN based hysteretic model open up potential 

applications in many complex engineering problems. For example, it can be applied to 

other engineering subjects such as bracing members, shape memory alloy applications, 
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highly engineered members with friction and damping, soil, and concrete material, etc 

within the same framework. The following are a list of the research directions that can be 

done in the near future. 

 

1. In this research, beam-column element with the lumped inelasticity model at the 

connections was used for self-learning simulations. However, assumptions of the inelastic 

behavior at fixed locations could have inherent modeling error since inelastic 

deformations at the connection and any other high-stress region is actually distributed 

within a certain range. Moreover, experiments can also have uncertainties in construction 

quality, materials and measurements and so on. Therefore, the error can be explained in 

the context of uncertainties in both numerical modeling and experiments. Recognizing 

the source of errors, further research on self-learning simulation with refined numerical 

models would be in need, depending on the engineering subjects.   

2. There could be different combinations of the trained NN based models that produce a 

same global response. For resolving this non-uniqueness problem, more refined model 

such as a component-based model could be suitable whereby the NN based model 

represents uni-axial inelastic hysteretic behavior of connecting components. Although 

there could be still modeling error related to yield/failure mechanisms in component level, 

they are not of our interest as long as accurate responses could be obtained in member 

and structural level. 

3. Although the NN based cyclic material model was verified with a multi-dimensional 

problem, its performance in the self-learning simulation has not been verified since there 

are few experimental data from three-dimensional steel moment-resisting frames with 
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semi-rigid connections. However, if reliable test data are available, the verification can be 

readily conducted. 

 

Since the proposed modeling approach can be used to solve inverse problems, its 

potential applications are far beyond the modeling of beam-column connections. It could 

have broad spectrum of applications such as nonlinear model updating, system 

identification, non-destructive testing, biomedical imaging and on-line hybrid simulation 

and testing. Detailed ideas on the potential applications need to be developed at the 

current stage. 
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Appendix A Computer Codes for Neural Network based 
Connection Model 

The neural network based connection model is written in MATLAB language (Ver 7.0). 

Although the codes shown in the Appendix are for one-dimensional problem, they can be 

extended to multi-dimensional cases with no restriction. 

A.1 Calculation of Algorithmic Tangent Stiffness 

% loop over each set of NN connection springs 
    for ispNN=1:ntens(idNN):nspringNN_the_group(idNN) 
        sp_label = NNSPRING_DATA(idNN).data(ispNN,1); 
        dof = NNSPRING_DATA(idNN).data(ispNN,2); 
        for inode=1:nnode 
            nod = NNSPRING_DATA(idNN).data(ispNN,inode+2); 
            for idofn=1:ndofn 
                pos = (inode-1)*ndofn + idofn; 
                ieq = IDArray(idofn,nod); 
                if ieq <= 0 
                    continue; 
                end 
                U_current_sp(pos) = DEL_U_STEP(ieq) + U_n(ieq); 
                U_prev_sp(pos) = U_n(ieq); 
            end 
        end 
        % get input node values 
        ipos = dof; 
        jpos = ndofn + dof; 
        inode(1) = U_current_sp(jpos) - U_current_sp(ipos); 
        inode(2) = U_prev_sp(jpos) - U_prev_sp(ipos); 
        % note that statv do not change when calculating tangent stiffness 
        % matrix 
        if istep==1 
            inode(3) = 0.0; 
        else 
            inode(3) = IRF_SPRINGNN(sp_label,istep-1); 
        end 
        inode(4) = inode(3) * inode(1);     % inner product 
        % preprocessing input node 
        for i=1:ninp 
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            inode(i) = inode(i)/iscale(i); 
        end 
        % forward passing NN to get node_v 
        for i=1:ninp 
            node_v(1,i) = inode(i); 
        end 
        for m=1:nlayer 
            for i=1:NNstruct(idNN).NN_arch(m+1) 
                node_h =0.0; 
                for j=1:NNstruct(idNN).NN_arch(m) 
                    node_h = node_h + kweight_value(m+1,i,j)*node_v(m,j); 
                end 
                node_v(m+1,i) = tanh(sbeta*node_h); 
            end 
        end 
         
        % copy the result to the output node 
        for i=1:nout 
            onode(i) = node_v(nlayer+1,i); 
        end 
        % processing the output node 
        for i=1:nout 
            onode(i) = onode(i) * oscale(i); 
        end 
         
        % calculate algorithmic tangent stiffness 
        for i = 1:ntens(idNN) 
            for j = 1:ntens(idNN) 
               ddsdde(i,j) = 0.0; 
               for k = 1:NNstruct(idNN).NN_arch(3) 
                   sum = 0.0; 
                   for l = 1:NNstruct(idNN).NN_arch(2) 
                         sum = sum + (1.0-node_v(nlayer,k)^2.0) *  
                        kweight_value(nlayer,k,l)*(1.0-node_v(nlayer- 
                       1,l)^2.0)*(kweight_value(nlayer-1,l,j)+kweight_value(nlayer- 
                       1,l,j)*node_v(nlayer-2, ninp-(ntens(idNN)-j) )); 
                   end 
                   ddsdde(i,j) = ddsdde(i,j) + (1.0-node_v(nlayer+1,i)^2.0) *  
                   kweight_value(nlayer+1,i,k) * sum; 
               end 
               ddsdde(i,j)=ddsdde(i,j)*(sbeta^3.0)*oscale(i)/iscale(j); 
            end 
        end         
             
       % transform the material stiffness matrix to global stiffness matrix 
       T = TransformMat(idNN,ispNN, ntens); 
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       temp = T'*ddsdde*T;  % expand to nevab x nevab size of global stiffness matrix to 
be assembled to global system matrix 
       estif_springNN(:,:,sp_label) = temp; 
       clear temp; 
        
       % initialization 
       U_current_sp = zeros(nevab,1); 
       U_prev_sp = zeros(nevab,1); 
        
    end 
 

A.2 Calculation of Internal Resisting Force 

% loop over each set of NN connection springs 
    for ispNN=1:ntens(idNN):nspringNN_the_group(idNN) 
        sp_label = NNSPRING_DATA(idNN).data(ispNN,1); 
        dof = NNSPRING_DATA(idNN).data(ispNN,2); 
        for inode=1:nnode 
            nod = NNSPRING_DATA(idNN).data(ispNN,inode+2); 
            for idofn=1:ndofn 
                pos = (inode-1)*ndofn + idofn; 
                ieq = IDArray(idofn,nod); 
                if ieq <= 0 
                    continue; 
                end                 
                U_current_sp(pos) = DEL_U_STEP(ieq) + U_n(ieq); 
                U_prev_sp(pos) = U_n(ieq);                 
            end 
        end 
        % get input node values 
        ipos = dof; 
        jpos = ndofn + dof; 
        inode(1) = U_current_sp(jpos) - U_current_sp(ipos); 
        inode(2) = U_prev_sp(jpos) - U_prev_sp(ipos); 
        % note that statv do not change when calculating tangent stiffness 
        % matrix 
        if istep==1 
            inode(3) = 0.0; 
        else 
            inode(3) = IRF_SPRINGNN(sp_label, istep-1); 
        end 
        inode(4) = inode(3) * inode(1);     % inner product 
         
        % preprocessing input node 
        for i=1:ninp 
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            inode(i) = inode(i)/iscale(i); 
        end 
         
        % forward passing NN to get node_v 
        for i=1:ninp 
            node_v(1,i) = inode(i); 
        end 
        for m=1:nlayer 
            for i=1:NNstruct(idNN).NN_arch(m+1) 
                node_h =0.0; 
                for j=1:NNstruct(idNN).NN_arch(m) 
                    node_h = node_h + kweight_value(m+1,i,j)*node_v(m,j); 
                end 
                node_v(m+1,i) = tanh(sbeta*node_h); 
            end 
        end 
         
        % copy the result to the output node 
        onode(1) = node_v(nlayer+1,1); 
 
        % processing the output node 
        onode(1) = onode(1) * oscale(1); 
         
        % store stress vector 
        tmpI_e(jpos,sp_label) = onode(1); 
        tmpI_e(ipos,sp_label) = -onode(1); 
 
        % initialization 
        U_current_sp = zeros(nevab,1); 
        U_prev_sp = zeros(nevab,1); 
         
    end  
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