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PREFACE 

 

The Zachry Department of Civil Engineering and the College of Engineering through the 

Texas Engineering Experiment Station (TEES) established the Center for Building 

Design and Construction in 1994, that was renamed the Center for Design and 

Construction Integration.  The Center brings together expertise from the Division of 

Construction, Geotechnical and Structural Engineering within the Department of Civil 

Engineering, and the Department of Construction Science within the College of 

Architecture.  This research center was initially headed by the late Dr. Walter P. Moore, 

Jr., who held a joint faculty appointment in both Civil Engineering and Architecture. 

 

Design and construction of engineered facilities have evolved from deterministic 

principles and reliance on past experience, two approaches that led to instances of 

fragmented subsystem design and construction processes.  Today, design and 

construction of engineered facilities are being focused on integration at the systems 

level, and are being evaluated based on performance, risk/uncertainty assessments, and 

life cycle costs.  Uncertainty has always presented a serious challenge to facility 

designers, engineers, constructors, developers, owners, users, and the general public.  

Now, more than ever, the public interest requires that the best methods and technology 

be used to understand, quantify, mitigate, and reduce risks, and that improved methods 

be developed to advance and integrate the risk analysis of constructed facilities.  This 

requires the integration of the different subsystems in the design process, such as the 

superstructures and their foundations, and also the integration of the system design and 

construction planning processes.  The Center for Design and Construction Integration 

provides a research and educational focus, as well as a resource for industry, on issues 

related to the integration of infrastructure design, construction, maintenance, 

rehabilitation, and health monitoring. 
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ABSTRACT 

Gravity load designed (GLD) reinforced concrete (RC) buildings represent a common 

type of construction in the Mid-America Region.  These buildings have limited lateral 

resistance and are susceptible to story mechanisms during earthquake loading.  Fragility 

estimates are developed to assess the seismic vulnerability of GLD RC buildings in the 

Mid-America Region.  Fragility is defined as the conditional probability of reaching or 

exceeding a performance level for a given earthquake intensity measure. 

Five sample buildings of various story heights (1, 2, 3, 6, and 10 stories) are used to 

represent generic RC frame buildings of 1 to 10 stories tall.  A Bayesian methodology is 

used to develop probabilistic demand models to predict the maximum inter story drift 

given the spectral acceleration at the fundamental period of the building.  The unknown 

parameters of the demand models are estimated using the simulated response data 

obtained from nonlinear time history analyses of the structural models for a suite of 

synthetic ground motions, developed for Memphis, Tennessee.  Seismic structural 

capacity values are selected corresponding to the performance levels or damage states as 

specified in FEMA-356 and as computed by nonlinear pushover analyses. 

 For the sample buildings, fragility estimates are developed using the predicted drift 

demands and structural capacity values.  Confidence bounds are developed to represent 

the epistemic uncertainty inherent in the fragility estimates.  In addition, bivariate 

fragility estimates, formulated as a function of spectral acceleration and the fundamental 

building period, are developed from the fragility estimates of the individual buildings.  

The bivariate fragilities can be used to quantify the seismic vulnerability of GLD RC 

frame buildings of 1 to 10 stories.  Using the Bayesian approach, a framework is 

developed to update the analytical fragility estimates using observed damage data or 

experimental test data.  As an illustration of the updating framework, the analytical 

bivariate fragility estimates for the sample buildings in the Mid-America Region are 

updated using the damage data obtained from 1994 Northridge, California earthquake. 
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Furthermore, to investigate and demonstrate the increase in seismic performance of 

the GLD RC frame buildings, the columns of the 2 and 3 story buildings are retrofitted 

by column strengthening.  Fragility estimates developed for the retrofitted buildings 

show the effectiveness of the retrofit technique by the improved seismic performance of 

GLD RC frame buildings. 
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CHAPTER I 

INTRODUCTION 

1.1 BACKGROUND  
 

Earthquakes cause significant human suffering and damage to built environment that 

includes buildings, water, gas, power supply, and transportation systems.  This study is 

concerned with assessment and prediction of structural damage from an earthquake to 

buildings in the Mid-America Region.  Estimates of structural damage are of direct value 

to those making decisions including engineers, city planners, emergency services, and 

also for optimizing the allocation of resources for maintenance, repair, and/or 

rehabilitation of buildings. 

 The relationship between earthquake ground motion intensity and structural damage 

can be used to obtain fragility estimates.  These fragility estimates provide the 

conditional probability of damage exceeding a specified performance level for a 

structural component or system for given measures of ground motion intensity.  A 

fragility estimate is an important element in assessing the seismic vulnerability of 

buildings. 

1.2 SEISMIC HAZARD IN THE MID-AMERICA REGION 
 

Moderate and high intensity earthquakes are infrequent in the Mid-America Region.  

However, three major earthquakes that caused significant damage and losses occurred 

during 1811-1812 with epicenter in New Madrid, Missouri and body-wave magnitude 

estimates higher than 7 mb (Nuttli 1973).  Lack of detailed records related to these large 

events means large uncertainties on occurrence and magnitude for future high intensity 

events in this region. 
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 National hazards mapping conducted by the United States Geological Survey 

(USGS), as well as the seismologic investigations conducted on behalf of the nuclear 

power industry, provide clear evidence that high intensity earthquakes can occur in 

Central and Eastern regions of the United States.  The major threats of future seismic 

events in Central United States come from the New Madrid Seismic Zone (NMSZ) and 

other areas of moderate seismicity. 

Building regulation in the Central and Eastern United States generally was based on 

the building code developed by the Building Officials and Code Administrators 

International (BOCA), while regulation in the southeastern United States generally 

followed the recommendations of the Southern Building Code (SBC) published by the 

Standard Building Code Congress International (SBCCI).  Uniform Building Code 

(UBC) published by International Conference of Building Officials (ICBO) generally 

served as the basis for building code regulation in the Western United States.  For 

seismic design provisions, BOCA and SBC referred to ASCE 7 (1988), which in turn 

was based on UBC.  After the 1971 San Fernando Earthquake, there were significant 

updates for seismic provisions in the UBC code.  These changes were not updated in 

ASCE 7 until 1993.  BOCA and SBC codes incorporated the updated seismic design 

provision only in 1993.  Therefore buildings designed after 1993 in the Mid-America 

Region, following the revised BOCA and SBC codes were most likely designed for 10% 

in 50 years ground motions. 

There is a wide range in return periods for maximum magnitude earthquakes 

throughout the United States and its territories.  For example, return periods of hundreds 

of years in parts of California to thousands of years in Central United States.  Therefore 

there was a need to develop a design approach that provides an approximately uniform 

margin against collapse throughout the United States.  To address this need USGS 

developed national seismic hazard maps (Frankel et al. 2000) based on the probabilistic 

seismic hazard assessment (PSHA) presented by Cornell (1968). 

Figure 1.1 provides normalized probabilistic hazard curves for seven cities in 

different geographic areas and different seismic zones in the United States based on the 
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revised USGS seismic hazard maps.  These selected cities provide an indication of the 

variation of the different hazard curves.  The slopes of the hazard curves range from 

relatively shallow for San Francisco and Los Angeles to relatively steep for New York 

and Charleston, SC.  The three vertical lines correspond to the annual frequency of 

exceedance typically used for the USGS probabilistic maps, e.g., 10%, 5%, and 2% in 50 

years.  It can be observed in that the difference between the 10% in 50 years ground 

motion and the 2% in 50 year ground motion in the Western United States is typically 

less than the difference between these two probabilities in less active seismic areas such 

as those in the Central and Eastern United States. 

 

 

 
Figure 1.1 Normalized hazard curves for selected cities 

(Source: Leyendecker et al. 2000) 
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To replace the three model building codes and provide a single series of model 

building code, International Code Council (ICC) published the first edition of 

International Building Code (IBC) in 2000.  According to IBC 2005, two-thirds of the 

2% in 50 year earthquakes (return period of 2475 years) should be used as the design 

basis ground motion for new buildings.  Based on past experiences in California, these 

buildings should be able to resist the 2% in 50 years earthquake without collapse. 

1.3 BUILDING INVENTORY 
 
Recent awareness of seismic hazard in the Mid-America Region has led to concerns of 

safety and seismic vulnerability of existing buildings.  Low- and mid-rise reinforced 

concrete (RC) frame buildings represent a common type of construction in this region 

(Mosalam 1996 and French 2004).  Most of the buildings constructed in the Mid-

America Region before the adoption of seismic provisions were primarily designed for 

gravity loads (GLD) with little or no consideration of seismic resistance and ductile 

detailing has not been provided explicitly in the design process.  Therefore, RC frame 

buildings constructed prior to 1976 are considered as non-ductile moment resisting 

frames. 

The reinforcement details of these non-ductile buildings are identified based on the 

review conducted by Beres et al. (1992) on the detailing manuals (ACI 315) and design 

codes (ACI 318) in use since 1940.  Typical reinforcing details of GLD RC frames are: 

(1) little or no transverse shear reinforcement is provided within the beam-column joints; 

(2) beam bottom reinforcement is terminated within the beam-column joints with a short 

embedment length; and (3) columns have bending moment capacities close to or less 

than those of the joining beams, leading to column sidesway or soft story mechanisms.  

The damage in GLD buildings during past earthquakes (OES 1995) and previous 

research by Bracci et al. (1992a) showed that these buildings have poor lateral load 

resistance. 
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1.4 OBJECTIVES AND SCOPE 
 

The purpose of this study is to quantify the seismic vulnerability of GLD RC frame 

buildings in the Mid-America Region.  These buildings have limited seismic resistance 

and are vulnerable to moderate and high seismic events.  Fragility estimates can be 

developed to quantify the seismic vulnerability, where the fragility is defined as the 

probability of a building reaching or exceeding a certain performance level given a 

specific ground motion parameter.  In general, fragility estimates that are developed 

from actual earthquake damage data of a particular region are more representative of the 

building performance in that region.  In the absence of actual damage data, fragility 

estimates can be developed from simulated data obtained from time history analysis of 

structural models of buildings. 

The objectives of this study are to: (1) develop analytical fragility estimates to 

quantify the seismic vulnerability of GLD RC frame buildings in the Mid-America 

Region; (2) validate and update the analytical fragility estimates with actual damage data 

or experimental data; and (3) apply suitable retrofit technique and assess the enhanced 

seismic performance of GLD RC frame buildings. 

1.5 REVIEW OF PAST WORK 
 
Several researchers have developed seismic fragility estimates for RC frame buildings 

following different procedures and methodologies.  The fragility estimates can be 

broadly classified into three groups; heuristic, empirical and analytical fragilities based 

on the damage data used in their formulation. 

 Heuristic fragility estimates are developed based on the estimates of the probable 

damage distribution of building when subjected to different earthquake intensities 

provided by the civil engineers with experience in the field of earthquake engineering.  

Probability density functions are fit to these damage estimates.  Fragility estimates are 

obtained from the probability distributions of the damage state at each intensity level.  

The vulnerability assessment method prescribed in ATC-13 (1985) and ATC-40 (1996) 

is based predominately on expert opinion. 
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Empirical fragility estimates are developed using the observed damage data from 

past earthquake events.  Fragility curves are developed by integrating the damage with 

the ground motion intensity parameter.  Yamazaki and Murao (2000) developed fragility 

estimates for Japanese buildings using the damage data from the 1995 Kobe Earthquake. 

Analytical fragility estimates are developed using the simulated response data 

obtained by time history analysis of simplified structural models of buildings for actual 

or synthetic earthquake ground motions.  Hwang and Huo (1994), Singhal and 

Kiremidjian (1996), and Mosalam et al. (1997) developed analytical fragility estimates 

for RC frame buildings. 

In general, most of the existing fragility estimates for RC frame buildings cannot be 

directly applied to the Mid-America Region because the earthquake ground motions 

used for simulation of response data do not represent the Mid-America Region.  

Furthermore, all the relevant uncertainties, particularly the uncertainty in the idealized 

mathematical model used to describe structural systems and their behavior were not 

incorporated in the existing fragility estimates.  Furthermore, the validity of the 

analytical fragility estimates should be determined by comparing with field data such as 

observed damage data of similar buildings from earthquakes or from experimental test 

data.  Existing analytical fragility estimates are rarely verified for field data.  In addition, 

the existing analytical approaches do not provide a framework to update the analytical 

fragility estimates using observed damage data or experimental test data of similar 

structural systems and components.  Of the reviewed fragility estimates for RC 

buildings, Singhal and Kiremidjian (1998) developed a Bayesian approach to update the 

analytical approach field data with limited success.   

1.6 PROPOSED APPROACH FOR DEVELOPING FRAGILITY ESTIMATES 
 

In this study, the analytical fragility estimates for GLD RC frame buildings are 

obtained by using the simulated data from the nonlinear time history analysis of 

structural models of buildings.  Figure 1.2 shows the schematic of the proposed approach 

for obtaining the fragility estimates. 
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Figure 1.2. Schematic of the proposed approach for obtaining the fragility estimates for RC frame buildings 
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The uncertainty in each element of the chain of events from the ground motions, 

structural modeling, structural response, and to demand models and their propagation 

should be accounted for. 

For rapid seismic vulnerability assessment, fragility estimates are developed for 

generic buildings that represent, in an average the building inventory in a particular 

region.  In this study, based on the building inventory data compiled by French (2004) 1, 

2, 3 story (low-rise) and 6 and 10 story (mid-rise) RC frame buildings are selected to 

represent the generic buildings in the Mid-America Region. 

Structural demand is defined as the peak inter story drift ( )δ  imposed due to an 

earthquake ground motion.  A Bayesian methodology is used to develop probabilistic 

demand models to predict δ  for a given scalar intensity measure.  A practical approach 

is to select a scalar intensity measure of the ground motion that can be correlated well 

with the structural response.  Several studies (Luco and Cornell 2000, and Gardoni et al. 

2003) have shown that the 5% damped elastic spectral acceleration, aS  , at the 

fundamental period of the building, 1T , gives good correlation of the structural damage.  

In addition, the elastic spectral acceleration can be conveniently obtained from the 

USGS National earthquake maps (2002).  Simulated response data obtained from the 

nonlinear time history analyses of structural models of sample buildings for the synthetic 

ground motions are used to for statistical analysis.  The Bayesian approach properly 

accounts for all the prevailing uncertainties. 

Structural capacity is also defined as the inter story drift value that will satisfy a 

specified performance level.  These performance levels qualitatively define the damage 

levels in the buildings.  In this study, structural capacity values are identified 

corresponding to the performance levels specified in FEMA-356 (FEMA, 2000), and 

also for the damage levels obtained from nonlinear pushover analyses. 

By using the estimated demand and capacity values, fragility estimates are then 

given for the selected low- and mid-rise RC frame buildings.  These fragility estimates 

can be used to quantify the seismic vulnerability of GLD RC frame buildings.  The 

choice made for the analysis method, structural idealization, seismic hazard, and damage 
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models strongly influences the fragility estimates and cause significant differences in the 

fragility estimates made by different authors for the same location, same structure type, 

and seismicity (Priestley 1998).  Therefore to develop more robust fragility estimates, 

the analytical fragility estimates are updated with actual damage data of similar RC 

frame buildings from other regions. 

1.7 OUTLINE OF REPORT 
 
Following the general introduction presented in this chapter, Chapter II discuses the 

Bayesian approach for the statistical analysis.  The problem of constructing a prior 

distribution that properly reflects the present state of knowledge is discussed. 

Chapter III discusses the selection of generic buildings representative of building 

inventory data in the Mid-America Region.  Design, member details and analytical 

modeling of buildings are also discussed.  In Chapter IV, probabilistic demand models 

are developed to predict the inter story drift.  The unknown parameters of the demand 

model are estimated by using the response data obtained from nonlinear time history 

analyses.  Seismic structural capacity values corresponding to the performance levels or 

damage specified in FEMA-356 and nonlinear pushover analyses are presented in 

Chapter V.  

In Chapter VI, fragility estimates of all buildings are determined using the predicted 

demand and capacity values presented in Chapters IV and V, respectively.  Confidence 

bounds are also developed around the median fragility estimates to represent the 

epistemic uncertainties in the fragility estimates.  Bivariate fragility estimates, 

formulated as a function of spectral acceleration and the fundamental building period, 

are developed from the fragility estimates of individual buildings. 

Chapter VII presents the Bayesian methodology to update the analytical fragility 

estimates using observational and experimental data.  As an illustration of the 

methodology, the bivariate fragility estimates are updated by using the actual damage 

data of RC frame buildings during the 1994 Northridge earthquake in California. 
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Chapter VIII presents the fragility estimates of the retrofitted GLD RC frame 

buildings.  In general, the GLD RC frame buildings are susceptible to soft story 

mechanism due to low moment capacities of columns compared to that of the beams at a 

beam column joint.  To deter the soft story mechanism and improve the seismic 

performance of these buildings, the buildings are retrofitted by strengthening the 

columns. 

Chapter IX documents the summary, contributions, and conclusions of this report 

and also future research. 
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CHAPTER II 

STATISTICAL ANALYSIS 

2.1 INTRODUCTION 
 
The statistical analysis of simulated data presented in this report is based on the 

Bayesian notion of probability.  In order develop more robust fragility estimates and to 

validate and update the analytical fragility estimates, it is essential for the statistical 

approach to be capable of incorporating all types of available information and explicitly 

account for all the relevant uncertainties.  The Bayesian approach used in this study is 

ideally suited for the above purpose.  This chapter presents the details of the Bayesian 

approach. 

 

2.2 BAYESIAN METHODOLOGY 
 

The fundamental concepts of Bayesian inference, closely following Box and Tiao (1992) 

and Gardoni et al. (2002a), is presented in this section.  Suppose that 1 2' ( , , , )ny y y=y K  

is a vector of n observations, and that its conditional probability density function, 

( | )p y θ , depends on the values of m  unknown parameters '
1 2( , , , )mθ θ θ= Kθ  having a 

probability distribution ( )p θ .  Then  

 ( ) ( ) ( ) ( )| ( , ) |p p p p p= =y θ θ y θ θ y y  (2.1) 

where ( , )p y θ represents the joint probability distribution of y  and θ . 

For given observed data y , the conditional probability distribution of θ can be written as 

 ( ) ( ) ( )
( )

|
|

p p
p

p
=

y θ θ
θ y

y
 with ( ) 0p ≠y  (2.2) 

and 
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 ( ) ( )
( ) ( )
( ) ( )

1 |  continuous
| ( )

|     discrete

p p d
p E p

p p
κ −

⎧⎪= = =⎡ ⎤ ⎨⎣ ⎦ Δ⎪⎩

∫
∑

θ

y θ θ θ θ
y y θ y

y θ θ θ θ  (2.3) 

where the sum or the integral is taken over the admissible range of θ , and where 

[ ( )]E fθ θ  is the mathematical expectation of ( )f θ  with respect to the distribution ( )p θ .  

Therefore, Eq. (2.2) can be written as 

 ( ) ( ) ( )| |p p pκ=θ y y θ θ  (2.4) 

Eq. (2.2), or its equivalent Eq. (2.4) is referred to as Bayes’ theorem, where ( )p θ  can be 

viewed as the prior distribution reflecting the state of knowledge about θ  prior to 

obtaining the data.  ( | )p θ y  is the posterior distribution of θ  given y , which represents 

the knowledge gained about θ  from the observed data.  The quantity κ  is a normalizing 

factor necessary to ensure that the posterior distribution ( | )p θ y  integrates or sums to 

one.  Following Fisher (1922), ( | )p y θ  in Eq. (2.4) is called as the likelihood function of 

θ , for given data y  and is written as ( | )L θ y .  Therefore, the Bayes’ formula is written 

as 

 ( ) ( ) ( )| |p L pκ=θ y θ y θ  (2.5) 

 The Bayes’ theorem states that the probability distribution for θ  posterior to the data 

y  is proportional to the product of the distribution for θ  prior to obtaining the data and 

the likelihood for θ  given y .  The data modifies the prior information through the 

likelihood function.  Therefore, the likelihood function plays a very important role in 

Bayes’ theorem. 

 In addition, the Bayes’ theorem can be used to continuously update the present 

knowledge every time new knowledge becomes available.  For example, if an initial 

sample of observations, 1y , is originally available, then application of the Bayes formula 

gives 

 ( ) ( ) ( )1 1| |p L p∝θ y θ y θ  (2.6) 
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Suppose, if a second sample of observations, 2y , distributed independently of the first 

sample, becomes available, 1( | )p θ y  can be updated to account for the new information 

such that 

 
( ) ( ) ( ) ( )

( ) ( )

1 2 1 2

1 2

| , | |

         | |

p p L L

p L

∝

∝

θ y y θ θ y θ y

θ y θ y
 (2.7) 

Eq. (2.7) is of the same form as Eq. (2.6) except that ( )1|p θ y , the posterior distribution 

for θ  given 1y  acts as the prior distribution for the second sample.  This updating 

process can be applied any number of times.  Repeated applications of Bayes’s theorem 

can then be seen as a learning process, where the present knowledge about the unknown 

parameters θ  is continuously modified as new data becomes available. 

2.2.1 Prior Distribution of Parameters 
 
A prior distribution, which is supposed to represent what is known about unknown 

parameters before the data is available, plays an important role in Bayesian analysis.  

Such a distribution can be used to represent prior knowledge or relative ignorance.  For 

this reason, it is essential to construct prior distributions that could reflect a situation 

where little is known a priori.  Bayes suggested that in case of lack of previous 

knowledge one could use a uniform distribution.  This is usually referred to as “Bayes’s 

postulate.” 

 In refutation of Bayes’s postulate, it is argued that if the distribution of a continuous 

parameter θ  is taken locally uniform, then the distribution of a transformation of θ , e.g., 

lnθ  or 1θ −  , would not be locally uniform.  Thus application of Bayes’ postulate to 

different transformations of θ  would lead to inconsistent posterior distribution even for 

the same data.  This inconsistency does not mean that Bayes’ postulated should not be 

used in practice.  In general, the inconsistency is unacceptable only if it produces results 

outside acceptable limits of approximation.  For example, if the range of uncertainty for 

θ  is not large compared to the mean value, then over this range, transformations such as 
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lnθ  or 1θ −  would be nearly linear.  Thus approximate uniformity for θ  would imply 

approximate uniformity for the transformed θ . 

 For large or even moderate-sized samples, fairly drastic changes in the prior 

distribution may only lead to minor modifications of the posterior distribution.  Thus, for 

independent observations 1 2, , , ny y yK , the posterior distribution is given as 

 ( ) ( ) ( )1 2
1

| , , , |
n

n i
i

p y y y p p yθ θ θ
=

∝ ∏K  (2.8) 

Therefore, for sufficiently large n , the information content introduced by the likelihood 

tend to overwhelm the contribution of the prior.  An illustration of the robustness of 

inference, under sensible modification of the prior, is provided by the study of Mosteller 

and Wallance (1964).  The above arguments suggest that arbitrariness in the choice of 

the transformation in terms of which the prior is locally uniform is often acceptable.  The 

degree of arbitrariness will have an appreciable effect for sample sizes than for the large 

sample sizes. 

 

2.2.2 Non-informative Prior 

 
This section describes how to construct a non-informative prior for probabilistic models 

that are used later in this study.  For example, for constructing a non-informative prior 

distribution for the parameter ( , )=Θ θ Σ , where ( )1, nθ θ=θ K  represents a vector of 

parameters and Σ  represents the variance-covariance matrix, it is assumed that θ  and 

Σ  are approximately independent.  Therefore the prior distribution of Θ  is given as 

 ( ) ( ) ( )p p p≈Θ θ Σ  (2.9) 

It is also assumed that the parameterization in terms of θ  is such that it is appropriate to 

take θ  as locally uniform, 

 ( ) constantp =θ  (2.10) 
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Following Gardoni et al. (2002a), 

 ( ) ( )1 / 2

1

1n
n

i i

p
σ

− +

=

∝ ∏Σ R  (2.11) 

where, 2
iσ  represents the variances, [ ]ijρ=R  represents the n n×  correlation matrix.  

For a single parameter Eq. (2.11) can be written as  

 ( ) 1p σ
σ

∝  (2.12) 

2.2.3 Likelihood Function 

 
As mentioned earlier, the likelihood function ( )|L θ y plays a very important role in 

Bayes’ formula.  The likelihood function is defined up to a multiplicative constant.  This 

is in accord with the role it plays in Bayes’ formula, since multiplying the likelihood 

function by an arbitrary constant will have no effect on the posterior distribution of θ .  

Formulation of the likelihood function depends on the type and form of the available 

information (Gardoni et al. 2002a). 

 

2.2.4 Posterior Distribution 

 
Combining the likelihood function and the prior distribution, the posterior distribution of 

the parameters are obtained.  However computation of the posterior statistics is not a 

trivial one.  It requires multifold integration over the Bayesian integrand ( ) ( )|L pθ y θ .  

In this study, an importance sampling algorithm developed by Gardoni et al. (2002a) is 

used to compute the posterior statistics of the parameters. 
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CHAPTER III 

BUILDING SYSTEMS AND SIMULATION OF RESPONSE DATA 

3.1 INTRODUCTION 
 

For rapid seismic vulnerability assessment of buildings in a region, seismic fragility 

estimates are developed for generic buildings that represents, in an average sense, the 

building inventory in that region.  These fragility estimates can be used to quantify the 

seismic vulnerability of the entire building inventory.  The fragility estimates are 

developed using the simulated response data of the structural models of the generic 

buildings. The key aspects in the simulation procedure are: selection of ground motions, 

definition of generic buildings, and nonlinear analysis of structural models of generic 

buildings.  This chapter presents in detail the three key aspects mentioned above.  

3.2 SYNTHETIC GROUND MOTIONS 
 

As explained in Section 1.2, Mid-America is a region of moderate seismicity, where 

infrequent moderate to large earthquakes have occurred in the past.  However, strong 

motion records of engineering interest are non-existent.  Therefore, synthetic ground 

motions generated for Memphis, TN, by Wen and Wu (2001) and Rix and Fernandez 

(2004) are used in this study.  Wen and Wu (2001) provided two suites of 10 uniform 

ground motions; with probabilistic intensities of 10% in 50 years and 2% in 50 years, for 

both hard rock and representative soil sites.  From the ground motions developed by Rix 

and Fernandez (2004), 20 scenario-based records using two different source models, 

Atkinson and Boore (1995) and Frankel et al. (1996), and moment magnitudes of 5.5 at 

hypo-central distances of 10 km, of 6.5 at 10 and 50 km, and of 7.5 at 20 km are 

considered. A total of 180 earthquake records are used in the inelastic time history 

analyses.  Figure 3.1 shows the sample 5% damped elastic response spectra of the 

synthetic ground motions.  For a particular ground motions, the aS  corresponding to the 
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fundamental period of the building is used as the seismic demand.  The aS  values are 

normalized with the acceleration due to gravity ( )g . 

 

 

 

 

 

 

 

 

 

 

 

(a) 2% in 50 years records for soft soil (Wen and Wu 2001) 
 

 

 

 

 

 

 

 

 

 

 

(b) Moment magnitude 7.5, hypo-central distance 20 km, Frankel et al. (1996) 
model (Rix and Fernandez 2004) 

 
Figure 3.1 Sample response spectra of synthetic ground motions used in this study 
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3.3 GENERIC BUILDINGS 
 

Generic buildings are defined by structural geometry, typical structural components and 

methods of design.  Sample structures that are defined by specific geometry and design 

parameters, are selected to represent the generic buildings.  French (2004) compiled 

building inventory data for Memphis, TN.  A brief summary of the database is presented 

here.  Table 3.1 shows the classification of buildings based on the structural type.  

Tables 3.2 and 3.3 list the classification of buildings based on year of construction and 

number of stories, respectively.  It is evident from this inventory data that significant 

number of existing RC frame buildings (classified as C1 and highlighted in Tables 3.1-

3.3) were designed and constructed prior to the adoption of seismic provisions in the 

building codes.  Also, most of the RC frame buildings are in the 1 to10 story range.  

Based on the number of stories, buildings are classified as low-rise (1 to 5 story) and 

mid-rise (6 to 10 story). 

Based on this inventory data, 1, 2, 3, 6, and 10 story RC frame buildings are selected 

to represent the generic GLD RC frame buildings in the Mid-America Region.  Since 

seismic fragility estimates are developed for generic buildings that represents, in an 

average sense, the building inventory in that region, a regular and symmetric distribution 

of mass and stiffness are selected for all sample buildings.  All buildings are assumed to 

have 4 equal bays with a spacing of 26 ft in the longitudinal and transverse directions 

with an individual story height of 12 ft.  Figure 3.2 shows the plan and elevation details 

of the sample buildings. 

It is assumed for simplicity that the slabs, beams and columns will have constant 

cross-sections throughout the height of each building and that the bases of the lowest 

story segments are fixed.  Floor and roof elements (diaphragms) are assumed to be rigid. 

In the rest of this section loading details, analysis, and design of sample buildings are 

presented. 
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Table 3.1 Classification of buildings based on the structure type for Memphis, TN 
(French 2004) 
Structure Type Code No. of buildings 

Concrete MRF C1 461 

Concrete Shear Wall C2 115 

Concrete Tilt-up PC1 1060 

Precast Concrete Frame PC2 140 

Reinforced Masonry RM 1524 

Steel Frame S1 479 

Light Metal Frame S3 7364 

Unreinforced Masonry URM 6033 

Wood Frame W 269475 

Unknown Unknown 406 

 

 

Table 3.2 Classification of buildings based on year of construction (French 2004) 
Code Pre 

1939 

1940-

49 

1950-

59 

1960-

69 

1970-

79 

1980-

89 

Post 

1990 

Total 

C1 103 11 16 35 76 131 89 461 

C2 6 6 32 38 24 5 3 115 

PC1  2 38 153 250 365 252 1060 

PC2 3 2 81 40 2 7 5 140 

RM 3 0 4 35 173 625 684 1524 

S1 7 2 9 25 52 335 49 479 

S3 47 48 720 1016 820 2056 2657 7364 

URM 2193 1401 851 806 755 20 7 6033 

W 29370 23248 49929 36848 45333 35176 49571 269475 

Unknown 3 0 1 0 5 4 4 406 

Totals 212768 71913 1786 135 53 13 389 287057 

Percent 74.12 25.05 0.62 0.05 0.02 0.00 0.14 100 
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Table 3.3 Classification of buildings based on number of stories for Memphis, TN 
(French 2004) 

Code 1 2 3-5 6-10 11-20 Over 

21 

Unknown Total 

C1 125 74 191 44 24 3 0 461 

C2 13 18 31 30 16 7 0 115 

PC1 977 71 10 1 1 0 0 1060 

PC2 78 35 19 7 1 0 0 140 

RM 1131 323 69 1 0 0 0 1524 

S1 58 192 196 22 9 2 0 479 

S3 6170 962 231 1 0 0 0 7364 

URM 4487 942 577 25 1 1 0 6033 

W 199725 69293 456 1 0 0 0 269475 

Unknown 4 3 6 3 1 0 389 406 

Totals 212768 71913 1786 135 53 13 389 287057 

Percent 74.12 25.05 0.62 0.05 0.02 0.00 0.14 100 
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Figure 3.2 Plan and elevation of low- and mid-rise GLD RC frame buildings 
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3.3.1 Loading Details 
 

The gravity loads consist of the structural self weight; 20 psf superimposed dead loading 

for electrical, mechanical, plumbing, and floor and ceiling fixtures; 250 lb/ft for exterior 

cladding; and 50 psf for live loads for a typical office building. 

The buildings are assumed to be located in Memphis, TN, therefore the design wind 

speed is determined to be 90 mph.  Since wind load seldom govern the design of low-

rise buildings, wind load forces are determined only for the 6 and 10 story buildings in 

accordance with the analytical procedure (Method 2) given in ASCE-7 (2002).  A 

summary of the design wind forces at all floor levels for a frame of the 6- and 10 story 

building is listed in Tables 3.4 and 3.5, respectively. 

 

 

Table 3.4 Design wind forces for a frame of the 6 story building 
Design wind force 

Level 
Height above ground 

level, Z (feet) 
Windward 

(kips) 

Leeward 

(kips) 

Total force 

(kips) 

6 72 1.68 -1.05 2.73 
5 60 3.19 -2.00 5.19 
4 48 3.00 -1.87 4.87 
3 36 2.76 -1.72 4.48 
2 24 2.46 -1.54 3.99 
1 12 2.02 -1.26 3.28 
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Table 3.5 Design wind forces for a frame of the 10 story building 

Design wind force 

Level 
Height above ground 

level, Z (feet) 
Windward 

(kips) 

Leeward 

(kips) 

Total force 

(kips) 

10 120 1.95 -1.22 3.16 
9 108 3.78 -2.36 6.14 
8 96 3.65 -2.28 5.94 
7 84 3.52 -2.20 5.71 
6 72 3.36 -2.10 5.47 
5 60 3.19 -2.00 5.19 
4 48 3.00 -1.87 4.87 
3 36 2.76 -1.72 4.48 
2 24 2.46 -1.54 3.99 
1 12 2.02 -1.26 3.28 

 

 

3.3.2 Load Combinations 
 

The non-seismic load combinations of ASCE-7 (2002) are used in the design of the 

structural members.  The following load combinations are used to determine the critical 

member forces 

1. 1.2 1.6D L+  

2. 1.2 1.0 1.6D L W+ +  

3. 0.9 1.6D W+  

where D , L , and W  are the effects due to dead loads, live loads, and wind forces, 

respectively. 
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3.3.3 Method of Analysis 
 

Due to regular plan and symmetric distribution of mass and stiffness, torsion effects will 

be negligible for these buildings.  Therefore, these regular buildings can be analyzed 

independently in the two lateral directions.  A two-dimensional analysis of the typical 

interior frame of the building is performed for the gravity and wind loads using ETABS 

(CSI 2006).  In the ETABS model, rigid-end offsets are defined at the ends of the 

horizontal members so that results are automatically obtained at the faces of the 

supports.  The stiffness properties of the members are input by using the effective 

moment of inertia of the section.  Based on the experimental results obtained by Bracci 

et al. (1995a) for GLD RC frame buildings the effective section properties are defined as 

follows 

• Beams: 0.5eff gI I=  

• Columns: 0.70eff gI I=  

where gI  and effI  are the gross and effective moment of inertia of the section, 

respectively.  The concrete is assumed to have an unconfined compressive strength of 

4000 psi, while steel reinforcement is assumed to have yield strength of 60,000 psi. 

 To determine the maximum positive and negative moment, dead load is applied to all 

the spans whereas checkerboard patterns and loading on all spans are used for live loads.  

Except for the roof level, the cladding load is applied to the exterior beam at each floor 

level. 

3.3.4 Design Details and Member Sections of Buildings 
 

All components of the sample buildings are designed according to the ACI 318 (2005) 

non-seismic design provisions.  Since gravity load forces governed over the wind load 

forces, typical slabs, beams, and columns are designed and detailed for gravity load 

effects. 
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 Column spacing is determined and maximized based on using an 8 in. thick 

reinforced concrete two-way slab designed according to the Direct Design Method 

specified in ACI-318 (2005).  Based on these gravity loadings, the minimum required 

slab reinforcement, #4 bars @ 12” cc., governs the design for both the column and 

middle strip regions.  Since floor loads are approximately the same for all buildings, slab 

and beam cross-section and reinforcement profiles are identical regardless of the story 

level and building. Beams are designed as T-beam sections according to ACI-318 

(2005), with an effective slab flange widths of 78 in. and 42 in. for the interior and 

exterior spans, respectively.  The final beam sections at the beam-column joint faces are 

16 in. wide and 24 in. deep from the top of the slab to the soffit of the beam. Table 3.6 

lists the required flexural reinforcement.  For negative moment at the supports, 5-#7 bars 

and 2-#7 bars for top and bottom bars, respectively are used.  #3 bars @ 10” are used for 

shear reinforcement.  At the mid-span, 2-#7 bars and 4-#7 bars are used for top and 

bottom bars, respectively.  Figure 3.3 shows the reinforcement profiles and beam cross-

sections at the critical locations. 

 

 

Table 3.6 Flexural reinforcement details for beam 

Location uM  
(ft-kips) 

*
sA  

(in.2) 
Reinforcement 

 
nMφ  

(ft-kips) 

Support –233 2.46 5-#7 268 
Midspan 198 1.98 4-#7 218 

'
* 2

,min

2

2
,max max

3 3 4,000 16 21.5 1.08 in.
60000

200 200 16 21.5          = 1.15 in.
60000

0.0214 16 21.5 7.36 in.

c w
s

y

w

y

s w

f b d
A

f

b d
f

A b dρ

× ×
= = =

× ×
= =

= = × × =
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Figure 3.3 Cross-section and reinforcement details of beams 
(Not to scale) 

 

 

Columns are also designed to resist combinations of moment and axial load 

occurring from the governing combinations of factored wind and gravity loads.  In 

Figure 3.2, C1, C2, C3, and C6 represent the columns in 1, 2, 3 and 6 story building, 

respectively.  As mentioned earlier, the column cross-section and reinforcement details 
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# 3 ties 
(Spacing varies) 

b” 
a”

 

Longitudinal  
Reinforcement 

for a sample building are assumed to be same for all floor levels.  For 10 story building, 

the column cross-section is kept constant for all floor levels, but the reinforcement 

details are changed at the fifth floor level. C10-1 and C10-2 represents the columns in 

floors 1 to 5 and 6 to 10, respectively.  Figure 3.4 shows the general profile of the 

column and Table 3.7 lists the cross-section and reinforcement details of the columns in 

low- and mid-rise buildings.  The member details of the buildings are representative of 

the non-seismic provisions of ACI-318 (2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Cross-section and reinforcement details of columns 
(Not to scale) 
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Table 3.7 Cross-section and reinforcement details of columns in low- and mid-rise 
buildings 

Reinforcement details 
Building Column Section 

(a”  b”) Longitudinal Bars Ties 
1 story C1 12”  12” 4-#8 bars #3 @ 12 in 
2 story C2 16”  16” 4-#8 bars #3 @ 16 in 
3 story C3 16”  16” 4-#8 bars #3 @ 16 in 
6 story C6 20”  20” 4-#9 bars  #3 @ 16 in 

C10-1 20”  20” 8-#9 bars #3 @ 16 in 10 story C10-2 20”  20” 4-#9 bars #3 @ 16 in 
 

 

3.4 NONLINEAR ANALYSIS 
 
The simulated damage data obtained from the nonlinear time history analyses of 

structural models of the generic buildings are used for developing the fragility estimates.  

The importance of choosing a nonlinear analysis tool and understanding its limitations 

cannot be underestimated.  This tool should enable sufficiently accurate modeling of the 

structures under investigation and provide stable nonlinear time history analysis of the 

structure.  In addition, this analysis tool must be calibrated to give a level of confidence 

in the response quantities provided. 

3.4.1 IDASS Models 
 
A typical interior frame of the building is modeled as a two-dimensional frame in 

IDASS (Kunnath 2003).  IDASS is a nonlinear analysis program for frame and frame-

wall structures subjected to seismic excitations.  The program requires specification of 

member behavior in terms of moment curvature envelopes and an associated hysteretic 

rule.  For each component cross-section, the moment curvature relation is specified as a 

non-symmetric tri-linear envelope with three degrading hysteretic parameters, as shown 

in Figure 3.5.  Table 3.8 lists the parameters of and description of the moment curvature 

envelope for components (beams and columns) of sample buildings.  The three main 
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characteristic represented in the hysteretic model are stiffness degradation, strength 

deterioration and pinching effect. 
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Figure 3.5 Modeling of degrading hysteretic behavior of RC members in IDASS 

(Kunnath 2003) 
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Table 3.8 Parameters for moment curvature envelope for components of RC frame 
buildings 
Parameter Description 

EI Initial flexural rigidity 

GA Shear stiffness (Shear modulus*shear Area) 

PCP Cracking moment (positive) 

PYP  Yield moment (positive) 

PUP Ultimate moment (positive) 

UYP Yield curvature (positive) 

UUP Ultimate curvature (positive) 

PCN Cracking moment (negative) 

PYN Yield moment (negative) 

PUN Ultimate moment (negative) 

UYN Yield curvature (negative) 

UUN Ultimate curvature (negative) 

 

 

  Lack of transverse reinforcement within the joint region is characteristic of GLD RC 

buildings.  This lack of shear-resistance mechanism can lead to nonductile failures once 

the shear capacity of concrete has been exceeded.  Previous experimental research on the 

seismic performance of the beam-column joints that have no transverse reinforcement in 

the joint region (Beres et al. 1996, Walker 2001, Alire 2002, and Pantelides et al. 2002) 

revealed that the joint shear stress-strain response typically has a degrading envelope and 

a highly pinched hysteresis.   

 Most nonlinear dynamic analyses programs assume infinite rigidity of the beam-

column joint in concrete frame regardless of the reinforcement details.  Celik and 

Ellingwood (2006) showed that the rigid joint model is inadequate in representing the 

highly pinched hysteretic character.  To avoid the complexity of modeling the nonlinear 

degrading inelastic behavior of a joint, an approximate approach is used in IDASS to 

model the joint behavior.  Flexural properties of the members framing into a joint are 
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adjusted to reflect the joint behavior.  Also, to model the non-ductile detailing of the 

GLD RC frame building, the moment curvature envelope is modified for stiffness 

degradation, target slip, and pinching effect. 

3.4.2 Validation of IDASS 
 
Bracci et al. (1992a) conducted shake table tests on a one-third scale model of a GLD 

RC frame subjected to simulated earthquake events.  Aycardi et al. (1992) conducted 

companion component and subassembly testing of members and connections of the 

scaled model using quasistatic reversed cyclic loading.  These experimental results were 

used to calibrate the hysteretic degrading parameters in IDASS.  Using these calibrated 

values, the stiffness degrading, target slip or crack closing, and energy based strength 

decay parameters for GLD buildings are set to 0.7, 0.7, and 0.05, respectively. 

 In addition, the inter story drift responses from these experimental studies were up to 

peak drifts between 3% and 5%, and thus IDASS was calibrated up to these drift levels.  

Further discussion and details of the calibrations are presented in Hoffman et al. (1992) 

and Bracci et al. (1992a). 

3.4.3 Fundamental Building Period 
 
An eigenvalue analysis of the structural model is performed in IDASS to determine the 

important elastic dynamic properties of the building, such as the fundamental periods 

and the mode shapes of the building.  As mentioned earlier, an important parameter for 

quantifying seismic demand in this work is the first mode period of the structure, 1T .  For 

the 1, 2, 3, 6, and 10 story buildings, 1T  is equal to 0.61, 0.58, 0.87, 1.38, and 2.35 sec., 

respectively.  It should be emphasized that these values are obtained by assuming 

reduced member sections according to recommendations in ACI-318 (2005).  It is 

important to note that the fundamental period of a building is sensitive to design and 

construction practices.  However, the values used are considered, on the average, to 

represent the fundamental periods of the 1to 10 story RC frame building inventory in the 

Mid-America Region. 
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 To estimate the fundamental period of a 1 to10 story building of general height, h , 

the building period 1T  is expressed as a function of h .  According to FEMA-356 (2000) 

and ASCE 7-02 (2002), 1T  can be estimated using an empirical relation: 

 ( )1
x

tT C h=  (3.1) 

where 0.018tC =  (FEMA-356 2000) or 0.016tC =  (ASCE 7-02 2002) for concrete 

moment-resisting frame buildings, h  represent the height (in feet) from the base to the 

roof level of the building, and 0.9x = .  The empirical relation given in Eq. (3.1) 

intentionally underestimates the actual building period and generally results in 

conservative estimates of lateral load for design purposes. 

 For a probabilistic approach, an unbiased estimate of the fundamental period of the 

building is required.  An unbiased probabilistic model similar to the empirical relation 

given in Eq. (3.1) is developed to estimate the 1T  of RC frame buildings from 1 to 10  

story height with no systematic error.  The general model form is written as: 

 ( ) 2

1 1T h eηη=  (3.2) 

where 1 2 and η η  are the unknown parameters of the model, and e  is the unit-median 

error term that describes the uncertainty in the relationship.  A logarithmic 

transformation of the model given in Eq. (3.2) is written as: 

 ( ) ( ) ( )
11 1 2ln ln ln TT hη η σ ε= + +  (3.3) 

where 
1Tσ ε  represents the model error, 

1Tσ  represents the unknown standard deviation 

of the model error, and ε  is a normal random variable with zero mean and unit standard 

deviation.  A Bayesian statistical analysis is used to estimate the unknown parameters of 

the model 
11 2( , , )Tη η σ .  The building period values obtained from the eigenvalue 

analysis of 1, 2, 3, 6, and 10 story buildings are used as data.  The posterior mean values 

of the parameters are 1η  = 0.097, 2η = 0.624, and 
1Tσ = 0.188. 

 Figure 3.6 shows the estimated median fundamental building period, 1̂T , computed 

by substituting the posterior mean of the model parameters in Eq. (3.2), along with the 
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one standard deviation confidence bounds.  Points of type ( ) represent the 1T  of the 

buildings obtained by eigenvalue analysis.  The dashed and dotted lines represents the 

period estimates from the FEMA-356 and ASCE 7-02 empirical relation, respectively.  

Figure 3.6 shows that the FEMA and ASCE fundamental building period estimates are 

biased approximately by a factor of 2σ  from the median 1̂T .  The developed 

probabilistic model corrects for this bias. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Fundamental building period estimates for 1 to 10 story GLD RC frame 
buildings 

 

 

3.5 SIMULATED RESPONSE DATA 
 
Nonlinear time history analyses of the structural models are carried out in IDASS using 

the 180 synthetic ground motions mentioned earlier.  Figure 3.7 shows the diagnostic 

  eigenvalue results using IDASS 

FEMA-356 (2000)  

1̂T  

1̂T σ+  

1̂T σ−  

ASCE 7-02 (2002) 
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plots of peak inter story drift, δ , versus aS  for sample buildings.  The response data 

have a large scatter due to record-to-record variation in the intensity of synthetic ground 

motions.  The structural system generally goes into inelastic range under severe ground 

excitations. 

3.5.1 Categorization of Response Data 
 
Based on the trends in the response data, they are categorized into three different types.  

A datum is of Type I when 1%δ δ≤  where 1 0.6%δ = , which is established based on the 

response data.  Type I data represents the elastic response of the system.  A datum is of 

Type II data when 1 2δ δ δ< ≤  and a datum is of Type III data when 2δ δ>  where, 2δ  

represents the maximum inter story drift value used in validating IDASS for GLD RC 

frame buildings.  Note that the response predictions from IDASS beyond 2 5%δ =  might 

be inaccurate due to lack of model verification and potential higher order analysis effects 

and are considered to be uncertain.  Types I and II data are categorized as ‘equality’ 

data.  Type III data are categorized as ‘lower bound’ data, where the information used in 

the statistical analysis is that 2δ δ> , instead of the actual response from the dynamic 

analysis as it is for data Types I and II.  For example if the IDASS provides an inter 

story drift of 8%, this value is beyond the validation limit (i.e. 5%). In this case, the 

information used in the statistical analysis is that 5%δ > . 
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(a) 1 story     (b) 2 story 

 

 

 

 

 

 

 

 

 

(c) 3 story     (d) 6 story 

 

 

 

 

 

 

 

 

 
(e) 10 story 

 

 

Figure 3.7 Simulated response data from nonlinear time history analyses 
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3.6 SUMMARY 
 
The key aspects in obtaining the simulated response data are: selection of ground 

motions, definition of generic buildings, and nonlinear analysis of structural models of 

generic buildings.  Synthetic ground motions developed for Memphis, TN, are selected 

for time history analyses.  Sample buildings are selected to represent generic low- and 

mid-rise RC frame buildings representative of the Mid-America Region.  These sample 

buildings are designed and detailed in accordance with the nonseismic provisions in ACI 

318 (2005).  Typical interior frames of the sample buildings are modeled as two-

dimensional frame in IDASS.  Nonlinear time history analysis of these structural models 

is carried out to obtain the response data for buildings.  The response data have large 

scatter for high intensity ground motions. 
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CHAPTER IV 

PROBABILISTIC DEMAND MODELS 

4.1 INTRODUCTION 
 

Unbiased estimates of the structural demand and capacity are required for obtaining the 

fragility estimates.  Therefore, it is essential to develop probabilistic demand models that 

are unbiased that is, on average, correctly predict the mean structural demand and 

accounts for all prevailing uncertainties (Ramamoorthy et al. 2006a).  This chapter 

presents a Bayesian framework for developing probabilistic demand models for GLD 

RC frame buildings that accounts for model errors that arise from using an inaccurate 

model form and statistical uncertainty. 

4.2 DEMAND MODELS 
 

In this study, a probabilistic seismic demand model relates ground motion intensity 

measures to structure specific demand measures.  Selecting an intensity measure and 

demand measure pair for a practical sufficient, effective, and efficient probabilistic 

demand models is not easy (Mackie and Stojadinovic 2001).  Thus, the choice of 

intensity and demand measure and the relationship between these measures are critical 

for a successful probabilistic demand model.  Based on extensive regression analyses of 

response of steel structures Cornell et al. (2002) proposed that for a given aS , the peak 

inter story drift demand can be predicted using the power model:  

 ( ) 1

0 aS eγδ γ=  (4.1) 

where e  is the unit-median error term that describes the uncertainty in the relationship; 

and the unknown parameters, 0γ  and 1γ  can be determined by regression analysis.  This 

relationship is approximate and there can have large scatter around the regression line.  

The predicted demand is therefore the estimate of the mean inter story drift demand 
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conditional on a given value of aS .  The scatter in terms of the coefficient of variation, 

| aSδσ , also depends, in principle, on aS .  Other demand models, with multiple regressors 

like peak ground acceleration (PGA), spectral velocity ( vS ), spectral displacement ( dS ) 

and duration of the earthquake, can also be used to as the seismic intensity variable.  

However, the demand model given in Eq. (4.1) is simple and accurate.  Also, Gardoni et 

al. (2003) showed that aS  correlates well with the structural response. 

 Following Gardoni et al. (2002b), a logarithmic transformation of Eq. (4.1) gives a 

linear regression model 

 ( ) ( ) ( )0 1 ln( )|ln ln ln
aa SS δδ γ γ σ ε= + +  (4.2) 

where ε  is a random variable representing the unknown errors in the model with zero 

mean and unit standard deviation; ln( )| aSδσ  represents the standard deviation of the model 

error.  Diagnostic plots of the data or the residuals against model predictions or 

individual regressor can be used to verify the suitability of an assumed transformation 

(Rao and Toutenburg, 1997). 

By defining ln( )D δ= , 0 0ln( )θ γ= , and 1 1θ γ= , Eq. (4.2) can be written as: 

 ( ) ( )0 1 |; ln
aa a D SD S Sθ θ σ ε= + +Θ  (4.3) 

where 0 1 |( , , )
aD Sθ θ σ=Θ  are unknown parameters that need to be estimated, | aD Sσ ε  

represents the error of the model in logarithmic form.  Bayes’ theorem can be used to 

estimate the parameters of the model in Eq. (4.3) under the following assumptions: (1) 

the model error ε  is normally distributed (normality assumption); and (2) the model 

variance is independent of aS  (homoskedasticity assumption).  Figure 4.1 shows the 

plots of response data in logarithmic space, ln( )δ  versus ln( )aS  for all buildings.  The 

solid dots (●) represent Type I data, the stars ( ) represent Type II data, and the triangles 

( ) represent the ‘lower bound’ data (Type III). 
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(a) 1 story       (b) 2 story 

 

 

 
 

 
 

 

 
 

 
(c) 3 story       (d) 6 story 

 

 

 

 

 
 

 

 

 

(e) 10 story 
 

Figure 4.1 Peak inter story drift response data from nonlinear time history analysis 
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4.3 UNCERTAINTY IN MODELS AND PREDICTION 
 

A large variety of uncertainties are involved in developing and assessing a probabilistic 

model.  Some of these uncertainties are inherently random (or aleatoric) and cannot be 

reduced with further data or observation.  Referring to the model formulations in the 

preceding section, this kind of uncertainty is present in the variable aS  and partly in the 

error term ε .  Other uncertainties arise from a lack of data (statistical uncertainty) and 

ignorance or approximations in modeling (model inexactness), termed as epistemic 

uncertainty.  This kind of uncertainty is reducible by using more accurate measurements 

and larger sample size.  These uncertainty is present in the model parameters Θ and 

partly in the error term ε .  Further discussion and details of the uncertainties are 

presented in Wen and Ellingwood (2003) and Gardoni et al. (2002a) 

4.4 BAYESIAN ESTIMATION OF PARAMETERS 
 
The unknown parameters of the demand models given in Eq. (4.3) are determined by 

using the Bayesian methodology.  Since no prior information is available for the 

parameters |( , )
aD Sσ=Θ θ , a non-informative prior is selected.  Following Gardoni et al. 

(2002b), for the linear model in Eq. (4.3) with negligible error in estimating aS , and 

under the assumption of statistically independent observations, the likelihood has the 

general form: 

 ( ) ( ) ( )| | |
equality data lower bound data

,
a a aD S D S i i D S i iL p r p rσ σ ε σ ε⎡ ⎤ ⎡ ⎤∝ = × >⎣ ⎦ ⎣ ⎦∏ ∏θ θ θ  (4.4) 

where  

 ( ) ( )simulated ;i ar D D S= −θ Θ  (4.5) 

Since ε  has the standard normal distribution, (4.4) can be written as 

 ( ) ( ) ( )
|

equality data lower bound data| | |

1, φ
a

a a a

i i
D S

D S D S D S

r r
L σ

σ σ σ

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪∝ × Φ −⎢ ⎥ ⎢ ⎥⎨ ⎬
⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

∏ ∏
θ θ

θ  (4.6) 
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where φ( )⋅  and ( )Φ ⋅ denote the standard normal probability density function and the 

cumulative distribution function, respectively.  In the above formulation for likelihood 

functions, equality data represents Types I and II response data and lower bound data 

represent the Type III response data classified earlier in Section 3.5.1. 

The posterior distribution of the parameters is obtained using the importance 

sampling algorithm developed by Gardoni et al. (2002b).  Table 4.1 lists the posterior 

statistics of the parameters in the demand models.  The standard deviation, | aD Sσ of the 

model error reflects both the aleatory uncertainty inherent in the synthetic ground 

motions and the epistemic uncertainty in the demand model (Ramamoorthy et al. 2006a). 

 

 
Table 4.1 Posterior statistics of parameters in single linear demand model for low-and 
mid-rise buildings 

Correlation coefficient 
Building 

 
Parameter 

 
Mean 

 

Standard 
deviation 

 
oθ  
 

1θ  
 

| aD Sσ  
 

oθ  1.9814 0.073 1   

1θ  1.4530 0.049 0.83 1  1 story 

| aD Sσ  0.5631 0.035 0.12 0.09 1 

oθ  2.2595 0.086 1   

1θ  1.7736 0.055 0.85 1  2 story 

| aD Sσ  0.5845 0.037 0.24 0.18 1 

oθ  2.7263 0.084 1   

1θ  1.5799 0.045 0.87 1  3 story 

| aD Sσ  0.5335 0.034 0.24 0.19 1 

oθ  2.1123 0.066 1   

1θ  1.1639 0.029 0.86 1  6 story 

| aD Sσ  0.4320 0.025 0.16 0.13 1 

oθ  2.4070 0.066 1   

1θ  0.9855 0.022 0.90 1  10 story 

| aD Sσ  0.3825 0.023 0.06 0.04 1 
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SLM

Figures 4.2 and 4.3 show the plot of predicted demand and residuals of the demand 

models for sample buildings, respectively.  Since the residuals are not randomly 

distributed, a single linear model (SLM) for the entire range of aS  is inadequate and 

does not provide a good fit of the response data.  Therefore, to obtain a better prediction 

of inter story drift demand, a bilinear model is developed based on the observation of the 

transformed data. 

 

 

 

 

 

 

 

 

 

 

(a) 1 story       (b) 2 story 

 

 

 

 

 

 

 

 

 

(c) 3 story       (d) 6 story 

 

Figure 4.2 Probabilistic single linear model (SLM) for low- and mid-rise GLD RC 
frame buildings 
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(e) 10 story 
 

Figure 4.2 Continued 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 1 story       (b) 2 story 

 

Figure 4.3 Residual plots of single linear model (SLM) for GLD RC frame buildings 
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(c) 3 story       (d) 6 story 

 

 

 

 

 

 

 

 

 

 
(e) 10 story 

 
 

Figure 4.3 Continued 
 

 

4.5 BILINEAR MODELS (BLM) 
 

A bilinear demand model is developed to predict the seismic structural demands since a 

single linear demand model did not provide a good fit for the entire range of aS .  A first 



 

 

45

 
linear model is developed for the elastic region using the Type I data ( 0.6%δ < ) and a 

second linear model is developed for the inelastic region using Types II and III data.   

The posterior statistics of the parameters in the bilinear model, 1 10 11 1 |( , , )
aD Sθ θ σ=θ  

and 2 21 2 |( , )
aD Sθ σ=θ , are estimated using a Bayesian approach and is listed in Table 4.2.  

For all buildings, 1 | aD Sσ  is larger in the inelastic range (higher aS  values) compared to 

the elastic range.  While 2 | aD Sσ  does not vary significantly for low- and mid-rise 

buildings in the elastic range, 2 | aD Sσ  is larger in the inelastic range, for low-rise 

buildings than for the mid-rise buildings. 

Figure 4.4 shows the predicted demand for all buildings (solid line) along with one 

standard deviation confidence interval (dotted lines) for low- and mid-rise buildings 

using the bilinear model.  In addition, the dash-dot line represents the predicted demand 

obtained from a single linear model.  Figure 4.5 shows the residual plot of the bilinear 

model for all buildings.  It is clear, that the residuals of the bilinear model are randomly 

distributed compared to the residuals of the single linear model. 

The bilinear model approaches the single linear model as the number of stories 

increase.  This is consistent with the ‘equal-displacement’ rule proposed by Velestos and 

Newmark (1960), where the peak displacements from both elastic and inelastic analysis 

are similar for buildings with fundamental building period greater than about 1 sec. 
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Table 4.2 Posterior statistics of parameters in bilinear demand model for elastic and 
inelastic range for low-and mid-rise buildings 

Correlation coefficient 
Building 

 
Range 

 
Parameter 

 
Mean 

 

Standard 
deviation 

 
oθ  
 

1θ  
 

σ  
 

10θ  0.9015 0.067 1   

11θ  0.9142 0.032 0.99 1  Elastic
0.6%δ <  

1 | aD Sσ  0.0988 0.005 0.01 0.01 1 

21θ  1.8117 0.080 NA 1  
1 story 

Inelastic
0.6%δ >   2 | aD Sσ  0.7724 0.071 NA 0.26 1 

10θ  0.6148 0.065 1   

11θ  0.9600 0.032 0.98 1  Elastic 
0.6%δ <  

1 | aD Sσ  0.1086 0.008 –0.01 0.01 1 

21θ  2.7576 0.123 NA 1  
2 story 

Inelastic
0.6%δ >   2 | aD Sσ  0.8270 0.079 NA 0.37 1 

10θ  1.2875 0.172 1   

11θ  0.9955 0.067 0.99 1  Elastic
0.6%δ <  

1 | aD Sσ  0.2187 0.018 –0.01 –0.01 1 

21θ  2.0913 0.084 NA 1  
3 story 

Inelastic
0.6%δ >   2 | aD Sσ  0.7134 0.068 NA 0.40 1 

10θ  1.1059 0.107 1   

11θ  0.8303 0.034 0.98 1  Elastic
0.6%δ <  

1 | aD Sσ  0.1634 0.013 0.01 0.01 1 

21θ  1.5281 0.056 NA 1  
6 story 

Inelastic
0.6%δ >   2 | aD Sσ  0.5725 0.049 NA 0.25 1 

10θ  1.1792 0.134 1   

11θ  0.6643 0.034 0.99 1  Elastic
0.6%δ <  

1 | aD Sσ  0.1984 0.016 0.01 0.02 1 

21θ  1.2453 0.034 NA 1  
10 story 

Inelastic
0.6%δ >   2 | aD Sσ  0.4430 0.039 NA 0.25 1 
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 (a) 1 story       (b) 2 story 

 

 
 

 
 

 

 
 

 

 (c) 3 story       (d) 6 story 

 

 

 

 
 

 

 

 

(e) 10 story 

Figure 4.4 Probabilistic bilinear model (BLM) for low- and mid-rise GLD RC frame 
buildings 
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Figure 4.5 Residual plots for bilinear model (BLM) for GLD RC buildings 
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4.6 SUMMARY 
 
Probabilistic demand models are developed to predict the peak inter story drift given the 

ground motion intensity measure.  Following the Bayesian approach, the unknown 

parameters of the demand models are estimated using the simulated response data from 

the nonlinear time history analyses.  The demand models are unbiased and explicitly 

account for the model error and statistical uncertainty. 
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CHAPTER V 

PROBABILISTIC CAPACITY  

5.1 SEISMIC STRUCTURAL CAPACITY 
 

In general, structural capacity is defined as the maximum displacement, force, velocity, 

or acceleration that a member or a system can withstand without failure, or more 

specifically, without exceeding a prescribed performance level.  These prescribed 

performance levels are discrete damage states that buildings could experience during an 

earthquake.  In this study, inter story drift capacity corresponding to the desired 

performance level is used as the structural capacity.  In general, probabilistic models to 

predict the structural capacity of building systems or components can be developed 

based on data obtained from previous seismic performance and from experimental 

testing of building systems and components (Gardoni et al. 2002a).  In this study, due to 

the absence of such data, capacity values are considered corresponding to different 

performance levels as specified in FEMA-356 (2000) and those computed from 

nonlinear pushover analysis.  In the followings sections inter story drift capacity value 

are identified for different performance levels. 

5.2 CAPACITY VALUES FOR FEMA-356 PERFORMANCE LEVELS 
 

Qualitative structural performance levels described in FEMA-356 (2000) are: Immediate 

Occupancy (IO), Life Safety (LS), and Collapse Prevention (CP).  Table 5.1 lists the 

description of the IO, LS, and CP performance levels.  For RC frame structures, these 

qualitative performance levels are represented by deterministic inter story drift limits of 

1%, 2%, and 4% of the story height for IO, LS, and CP performance levels, respectively.  

Although these suggested limits are approximate, they are considered fairly accurate for 

buildings properly designed for seismic loading. 
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Table 5.1 Structural performance levels specified in FEMA-356 (2000) 

Structure type 
Structural performance 

levels 

Description of 

structural performance 

level 

Inter story 

drift 

capacity 

Immediate Occupancy 

(IO) 

Minimal damage and 

occupants would have 

access to the structure 

following the 

earthquake event 

0.5% 

Life Safety (LS) Significant damage, but 

the life safety of the 

occupants would be 

preserved 

1.0% Concrete Frame 

Collapse Prevention (CP) Verge of structural 

collapse 

2.0% 

 

 

New RC frame buildings designed according to the current building codes should 

have the desired levels of seismic performance corresponding to different specified 

levels of earthquake ground motion.  However, for existing GLD RC frame buildings, 

the drift limits for LS and CP performance levels are probably not representative, nor 

conservative due to insufficient column strength and lack of reinforcement detailing for 

ductility.  Therefore, in this study for low- and mid-rise GLD RC frame buildings 

reduced drift capacity values of 0.5%, 1%, and 2% are used for IO, LS, and CP 

performance levels, respectively.  These drift values are selected based on the 

approximate member level rotations for vertical elements suggested in FEMA-356 

(2000).  These reduced drift values are consistent with the experimental tests conducted 

by Bracci et al. (1992a) on a scaled model of GLD RC frame buildings. 
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5.3 PUSHOVER ANALYSIS TO IDENTIFY STRUCTURAL CAPACITY 
 

Nonlinear static (pushover) analysis is used to quantify the resistance of the structure to 

lateral deformation.  Pushover analyses are commonly used in seismic design and 

evaluation of structures as indicators of structural yielding and potential failure 

mechanisms (Mwafy and Elnashai 2001).  The static pushover analyses procedure has 

been presented and developed by Saiidi and Sozen (1981), Fajfar and Gaspersic (1996), 

Bracci et al. (1997), and several other researchers.  In general, a sequence of inelastic 

static analysis is performed on the structural model of the building by applying a 

predefined lateral load pattern which is distributed along the building height.  The lateral 

forces are then monotonically increased until it becomes unstable and reaches the 

collapse state (force controlled) or its roof displacement reaches the predetermined limit 

(displacement controlled). 

The pushover technique provides useful information on the overall characteristics of 

the structural system and allows tracing the sequence of yielding and failure of the 

members.  Results of pushover analysis demonstrate resistance of the building in terms 

of story shear force versus top displacement, commonly referred to as the capacity curve 

of the building.  Figure 5.1a shows the illustration of an inverted triangular force 

controlled pushover analysis to identify the critical response of a 3 story RC frame 

building.  The yielding of members is represented by a solid dot ( ). 

The pushover method is also recommended as a tool for design and analysis purpose 

by the National Earthquake Hazard Reduction Program (NEHRP) guidelines for the 

seismic rehabilitation of existing buildings (FEMA-356 2000).  Various techniques have 

been recommended in FEMA-356 (2000), including the use of constant lateral force 

profiles and the use of adaptive and multimodal approaches.  Dooley and Bracci (2001) 

showed that critical drift capacity values for structural system performance levels can be 

identified using displacement controlled pushover analysis.  The performance levels 

identified are First Yielding (FY), defined as the inter story drift at which a member of a 

story or of a structure initiates yielding under an imposed lateral loading and Plastic 

Mechanism Initiation (PMI), defined as the inter story drift at which a story mechanism 
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(column side sway mechanism) initiates under an imposed lateral loading.  Although 

deformations beyond the PMI performance level may be possible provided  

 

 

 

 

 

 

 

 

 

 

 

(a) Inverted triangular loading  (b) Critical 2nd story response 

 

 

 

 

 

 

 

 

 

 

 

 

(c) Capacity diagram from pushover analysis 
 

Figure 5.1 Pushover analysis to identify critical story response 
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plastic hinging behavior is in a ductile fashion, this behavior can not be guaranteed for 

GLD RC frames. 

Figure 5.1b shows the illustration of displacement controlled pushover analysis 

procedure suggested by Dooley and Bracci (2001) to identify the critical response of a 3 

story RC frame building.  In order to identify the critical story mechanism of second 

story, the first story is held and the second story is given a target displacement of 10% 

drift.  The yielding of members is represented by a solid dot ( ) and the numbers next to 

the dots indicate the sequence of yielding.  Based on the sequence of yielding of the 

members, the inter story drift capacity corresponding to the FY and PMI performance 

levels are identified.  Figure 5.1c shows hypothetical capacity diagram for the force and 

displacement controlled pushover analysis shown in Figure 5.1a and 5.1b.  It is clear 

from the capacity diagram that the inter story drift capacity for FY and PMI performance 

levels depend on the loading or deformation pattern. 

Following the procedure suggested by Dooley and Bracci (2001), displacement 

controlled pushover analysis of sample buildings is performed in IDASS to identify the 

inter story drift capacity corresponding to FY and PMI performance levels.  Figures 5.2 

and 5.3 show the sequence of yielding of members along with the inter story drift 

capacity for FY and PMI performance levels for low- and mid-rise buildings, 

respectively.  The drift values of pushover performance levels are comparable to the 

reduced drift values of 0.5%, 1%, and 2% for FEMA-356 IO, LS, and CP performance 

levels respectively. 
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FY = 0.88% and PMI = 1.04% 

(a) 1 story 

 

 

 

 

 

 

 

FY = 0.35% and PMI = 0.56% 

(b) 2 story 

 

 

 

 

 

 

 

 

 

FY = 0.35% and PMI = 0.56% 

(c) 3 story 

Figure 5.2 Pushover analysis of low-rise buildings 
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FY = 0.43% and PMI = 1.44%  FY = 0.67% and PMI = 1.92% 

(a) 6 story     (b) 10 story 

 

Figure 5.3 Pushover analysis of mid-rise buildings 
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5.4 PROBABILISTIC STRUCTURAL CAPACITY 
 
To estimate the seismic fragility the capacity values must be specified in a probabilistic 

sense.  The deterministic seismic structural capacity value corresponding to the 

performance levels specified in FEMA-356 (2000) or damage levels from nonlinear 

pushover analyses are considered as the median capacity value.  Table 5.2 lists the 

median capacity values against each performance level for all buildings.  Uncertainty in 

estimation of the structural capacity arises from uncertain material properties, geometry, 

quality of construction, and assumptions in structural models of buildings.  In this study, 

the uncertainty in estimating the capacity is assumed to 0.30 (Wen et al. 2004). 

 

 
Table 5.2 Median drift capacities (in % story height) 

Low-rise buildings Mid-rise buildingsPerformance level 
1 story 2 story 3 story 6 story 10 story 

Immediate Occupancy (IO) 0.5 0.5 0.5 0.5 0.5 
Life Safety (LS) 1 1 1 1 1 
Collapse Prevention (CP) 2 2 2 2 2 
First Yield (FY) 0.88 0.35 0.35 0.43 0.67 
Plastic Mechanism Initiation (PMI) 1.04 0.56 0.56 1.44 1.92 

 

 

5.5 SUMMARY 
 

Structural capacity values are identified corresponding to the performance levels 

specified in FEMA-356 (2000) and damage levels from nonlinear pushover analysis.  To 

estimate the seismic fragility, the capacity values must be specified in a probabilistic 

sense.  Therefore, the deterministic capacity values are assumed as the median capacity 

and the standard deviation is assumed equal to 0.30 (Wen et al. 2004). 
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CHAPTER VI 

FRAGILITY ESTIMATES 

6.1 INTRODUCTION 
 

As defined earlier, fragility is the conditional probability of a building reaching or 

exceeding a certain performance level for a given ground motion parameter.  Following 

the conventional notation in structural reliability theory (Ditlevsen and Madsen 1996), 

the limit state function for the building is written as 

 ( ) ( ), ; ;a ag C S C D S= −Θ Θ  (6.1) 

where aS  represents the elastic 5% damped spectral acceleration at the fundamental time 

period of the building, which is used as the seismic intensity parameter, Θ  represents 

the vector of unknown parameters of the demand model, and C  and D  represents the 

capacity and demand of the building, respectively. 

Using Eq. (6.1), the fragility for the building is written as 

 ( ) ( ){ }; , ; 0a a aF S P g C S S⎡ ⎤= ≤⎣ ⎦Θ Θ  (6.2) 

The uncertainty in the event ( , ; ) 0ag C S ≤Θ  for given aS  arises from the inherent 

randomness in the capacity C , the inexact nature of the limit state function, and the 

uncertainty inherent in the parameters Θ  of the demand models. 

6.2 ESTIMATION OF FRAGILITY 
 

Depending on how the parameters Θ  are treated, different estimates of the fragility can 

be obtained (Der Kiureghian 2000 and Gardoni et al. 2002b).  A point estimate of the 

fragility is obtained by using the point estimates of the parameters Θ , e.g., the mean 

values of ( , )θ σ=Θ .  The corresponding point fragility estimates is given as  

 ( ) ( );a aF S F S= Θ  (6.3) 
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( )aF S  does not account for the epistemic uncertainties inherent in the model 

parameters.  One way to account for the epistemic uncertainties in the fragility 

estimation is to treat Θ  as random variables.  The corresponding fragility estimate, 

known as predictive fragility estimate is denoted by ( )aF S%  and it is obtained by 

integrating ( ; )aF S Θ  over all the possible values of Θwith the posterior density as 

weighing function, i.e. 

 ( ) ( ) ( );a aF S F S f d= ∫ Θ Θ Θ%  (6.4) 

where ( )f Θ denote the posterior joint probability density function of Θ  obtained by the 

Bayesian analysis.  The predictive fragility is the mean of the conditional fragility with 

respect to the uncertain parameters Θ .  The predictive fragility estimates does not 

distinguish between the aleatory and epistemic uncertainties. 

6.3 MEDIAN FRAGILITY ESTIMATES 
 

Wen et al. (2004) developed a closed form approximation to estimate ( ; )aF S Θ  by 

assuming lognormal distribution for capacity and demand.  The fragility formulation is 

given as 

 ( ) |

2 2 2
|

; 1 a

a

C D S
a

C D S m

F S
λ λ

σ σ σ

⎛ ⎞−⎜ ⎟≅ −Φ
⎜ ⎟+ +⎝ ⎠

Θ  (6.5) 

where ( )Φ ⋅  denotes the standard normal cumulative distribution function, Cλ  and | aD Sλ  

are the natural logarithm of the median capacity and demand of the structural system, 

respectively, Cσ  represents the uncertainty in estimating the capacity, | aD Sσ  represents 

the uncertainty in estimating the demand, and mσ  represents the uncertainty in structural 

modeling of buildings for nonlinear analysis. 

Fragility estimates for sample buildings are obtained by using the probabilistic 

demand models developed in Chapter IV and the capacity values developed in Chapter 

V for FEMA-356 and pushover performance levels in Eq. (6.5).  The dispersion of the 
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demand model | aD Sσ  represents the uncertainty in estimating the demand.  Following the 

recommendations of Wen et al. (2004), Cσ  and mσ  are assumed to be equal to 0.3. 

Figure 6.1 shows the median fragility estimates for a 1 story building corresponding 

to the FEMA-356 and pushover performance levels.  The jump in the fragility estimates 

is due to the prediction of demand using the bilinear model.  The dispersion in the 

inelastic range, 2 | aD Sσ  has a larger value compared to the 1 | aD Sσ  value in the elastic 

range.  At the transition point from the elastic range to the inelastic range, due to a larger 

value of 2 | aD Sσ , the value in the second term in Eq. (6.5) decreases for ( | ac D Sλ λ− ) > 0, 

leading to a sudden increase in fragility.  Similarly, the value in the second term in Eq. 

(6.5) increases when ( | ac D Sλ λ− ) < 0 resulting in a decrease in fragility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) FEMA-356 performance levels 

(IO = 0.5%, LS =1%, and CP = 2%) 
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(b) Pushover performance levels 

(FY = 0.88% and PMI =1.04%) 

 

Figure 6.1 Median fragility estimates for 1 story building 
 

 

6.3.1 Continuous Fragility Estimates 
 

Since for practical applications a continuous fragility estimate is preferred, a lognormal 

function is selected to obtain continuous fragility estimates over the entire range of aS .  

The lognormal function is given as: 

 ( ) ( ) 1

2

lnˆ ; a
a

S
F S

γ
γ

−⎛ ⎞
= Φ⎜ ⎟

⎝ ⎠
Γ  (6.6) 

where ˆ ( ; )aF S Γ  represents the continuous fragility and 1 2( , )γ γ=Γ denotes a vector of 

unknown parameters of the lognormal function.  The parameters, 1γ  and 2γ  are 

determined by fitting ˆ ( ; )aF S Γ  on ( ; )aF S Θ  using a Bayesian approach.  Tables 6.1 and 

6.2 list the estimates of the parameters for all buildings.   
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Figure 6.2 shows the continuous fragility estimates for 1 story building.  Figures 6.3 and 

6.4 show the ˆ ( ; )aF S Γ  curves for FEMA-356 and pushover performance levels for 

sample buildings.  Fragility curves for the mid-rise buildings are steeper than the low-rise 

buildings.  For example, fragility estimates for IO performance level increases from 0 to 

1 as aS  goes from about 0.1g to 0.25g for the 10 story building.  To reach the same 

fragility values, the aS  goes from about 0.1g to 0.75g for the 1 story building.  The 

increase in the range of aS  for the 1 story building is due to the larger value of | aD Sσ  in 

the inelastic range. 

 
 
Table 6.1 Estimates of the parameters for continuous fragility estimates (low-rise 
buildings) 
Building Performance level  Parameters 

  1λ  2λ  
+ 1σ  −1.7555 0.4918 

Median −1.7069 0.5422 Immediate Occupancy  
−1σ  −1.6454 0.5829 
+ 1σ  −1.3140 0.4064 

Median −1.2224 0.4308 Life Safety 

− 1σ  −1.1272 0.4299 
+ 1σ  −0.9899 0.5022 

Median −0.8697 0.4769 Collapse Prevention 

− 1σ  0.7619 0.4447 
+ 1σ  −1.3727 0.3947 

Median −1.2883 0.4273 First Yield 
−1σ  −1.1974 0.4335 
+ 1σ  −1.2964 0.4115 

Median −1.2027  0.4331 

1 story 

Plastic Mechanism 
Initiation 

−1σ  −1.1063 0.4299 
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Table 6.1 Continued 

Building Performance level  Parameters 
   1λ  2λ  

+ 1σ  −1.4143 0.3775 
Median −1.3638 0.4217 Immediate Occupancy  
− 1σ  −1.2968 0.4557 
+ 1σ  −1.1045 0.2666 

Median −1.0176 0.2976 Life Safety 

− 1σ  −0.9265 0.2987 
+ 1σ  −0.8975 0.3418 

Median −0.7850 0.3294 Collapse Prevention 

− 1σ  −0.6849 0.3052 
+ 1σ  −1.7443 0.4788 

Median −1.7128 0.5285 First Yield 
−1σ  −1.6696 0.5867 
+ 1σ  −1.3341 0.3360 

Median −1.2780 0.3790 

2 story 

Plastic Mechanism 
Initiation 

−1σ  −1.2050 0.4056 
+ 1σ  −2.0416 0.4338 

Median −1.9858 0.4934 Immediate Occupancy  
− 1σ  −1.9062 0.5503 
+ 1σ  −1.6294 0.3067 

Median −1.5213 0.3579 Life Safety 

− 1σ  −1.3990 0.3651 
+ 1σ  −1.3601 0.3944 

Median −1.2105 0.3875 Collapse Prevention 

− 1σ  −1.0742 0.3613 
+ 1σ  −2.3820 0.4906 

Median −2.3468 0.5395 First Yield 
−1σ  −2.2996 0.6144 
+ 1σ  −1.9475 0.4026 

Median −1.8838 0.4619 

3 story 

Plastic Mechanism 
Initiation 

−1σ  −1.7944 0.5096 
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Table 6.2 Estimates of the parameters for continuous fragility estimates (mid-rise 
buildings) 
Building Performance level  Parameters 

   1λ  2λ  
+ 1σ  −2.2149 0.4866 

Median −2.1513 0.5352 Immediate Occupancy  
− 1σ  −2.0699 0.5730 
+ 1σ  −1.7324 0.4218 

Median −1.6179 0.4396 Life Safety 

− 1σ  −1.5011 0.4315 
+ 1σ  −1.3173 0.4941 

Median −1.1794 0.4653 Collapse Prevention 

− 1σ  −1.0575 0.4353 
+ 1σ  −2.3738 0.5305 

Median −2.3210 0.5804 First Yield 
−1σ  −2.2529 0.6288 
+ 1σ  −1.5223 0.4696 

Median −1.3905 0.4576 

6 story 

Plastic Mechanism 
Initiation 

−1σ  −1.2681 0.4335 
+ 1σ  −2.9753 0.4947 

Median −2.8796 0.5486 Immediate Occupancy  
− 1σ  −2.7567 0.5736 
+ 1σ  −2.4370 0.4916 

Median −2.2808 0.4871 Life Safety 

− 1σ  −2.1312 0.4660 
+ 1σ  −1.8903 0.5230 

Median −1.7272 0.4930 Collapse Prevention 

− 1σ  −1.5819 0.4658 
+ 1σ  −2.7300 0.4551 

Median −2.6023 0.4899 First Yield 
−1σ  −2.4602 0.4879 
+ 1σ  −1.9235 0.5228 

Median −1.7600 0.4930 

10 story 

Plastic Mechanism 
Initiation 

−1σ  −1.6143 0.4658 
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(a) FEMA-356 performance levels 

(IO = 0.5%, LS =1%, and CP = 2%) 

 

 

 

 

 

 

 

 

 

 

 

(b) Pushover performance levels 

(FY = 0.88% and PMI =1.04%) 

Figure 6.2 Continuous fragility estimates for 1 story building 
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(a) 1 story     (b) 2 story 
 

 

 

 

 

 
 

 

 

(c) 3 story     (d) 6 story 

 

 
 

 
 

 

 

 

 

(e) 10 story 

Figure 6.3 Fragility estimates for FEMA-356 performance levels for all buildings 
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(e) 10 story 

Figure 6.4 Fragility estimates for pushover performance levels for all buildings 
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6.3.2 Confidence Bounds for the Fragility Estimates 
 

It is desirable to determine the epistemic uncertainty inherent in the fragility estimate, 

which is reflected in the probability distribution of ( ; )aF S Θ  relative to the 

parametersΘ .  Exact evaluation of this distribution requires nested reliability 

calculations (Der Kiureghian 1989).  Following Gardoni et al. (2002b), approximate 

confidence bounds are obtained using a first-order analysis.  The reliability index 

corresponding to the conditional fragility in Eq. (6.5) is defined as: 

   ( ) ( )|

2 2 2
|

;
; a

a

C D S a
a

C D S m

S
S

λ λ
β

σ σ σ

⎛ ⎞−⎜ ⎟=
⎜ ⎟+ +⎝ ⎠

θ
Θ  (6.7) 

The variance of ( ; )aSβ Θ  can be approximated by using a first-order Taylor series 

expansion around the mean point MΘ  as: 

 ( ) ( ) ( )2 T
a a aS S Sβσ β β≈ ∇ Σ ∇Θ ΘΘ Θ  (6.8) 

where ( )aSβ∇Θ  is the gradient row vector of ( ; )aSβ Θ  at the mean point and ΣΘΘ  

denotes the posterior covariance matrix.  Transforming these back into the probability 

space, one standard deviation bounds of the fragility estimate can be approximated as: 

 ( ) ( ) ( ) ( ){ },   a a a aS S S Sβ ββ σ β σ⎡ ⎤ ⎡ ⎤Φ − − Φ − +⎣ ⎦ ⎣ ⎦  (6.9) 

These bounds approximately correspond to 15% and 85% confidence level on the 

fragility estimates.  Figures 6.5 and 6.6 show the ˆ ( ; )aF S Γ  curves with confidence 

bounds for FEMA-356 and pushover performance levels for all buildings.   
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(a) 1 story     (b) 2 story 
 

 

 

 

 

 
 

 

 

(c) 3 story           (d) 6 story 

 
 

 
 

 

 

 

 

(e) 10 story 

Figure 6.5 Fragility estimates for FEMA-356 performance levels with confidence 
bounds 



 

 

70

 

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

 Sa (g)

FY
PMI

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

 Sa (g)

FY
PMI

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

 Sa (g)

FY
PMI

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

 Sa (g)

FY
PMI

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

 Sa (g)

FY
PMI

 
 

 

 

 

 
 

 

 

(a) 1 story (b) 2 story 
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Figure 6.6 Fragility estimates for pushover performance levels with confidence bounds 
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Given the fragility estimates, the seismic vulnerability of low- and mid-rise buildings 

can be estimated for a given seismic event.  For example according to the IBC (2003) the 

general design response spectrum for Memphis, Tennessee is shown in Figure 6.7.  The 

design aS  corresponding to the fundamental time period for the 1, 2, 3, 6, and 10 story 

building is equal to 0.69 g, 0.73 g, 0.49 g, 0.31 g, and 0.18 g, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 General design response spectrum for Memphis, TN based on IBC (2003) 
 

 

The median fragility values corresponding to the design response spectrum for the 1, 2, 

3, 6, and 10 story building are obtained from Figure 6.3 and are listed in Table 6.3.  The 

results show that for life safety and collapse prevention performance levels, significant 

damage is expected for the low-rise buildings compared to the mid-rise buildings. 
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Table 6.3 Median fragility values for low- and mid-rise buildings (in %) 

Low-rise buildings Mid-rise buildings 
Performance level 

1 story 2 story 3 story 6 story 10 story 

Immediate Occupancy  99.31 99.36 99.50 96.65 98.31 
Life Safety 97.51 99.09 98.80 84.53 87.74 

Collapse Prevention 85.21 92.33 90.02 50.71 51.00 
 

 

6.4 VALIDATION OF ANALYTICAL FRAGILITY ESTIMATES 
 

The validity of analytical fragility estimates should be determined using the observed 

damage data or experimental test data.  Due to lack of actual earthquake damage data of 

buildings in the Mid-America Region the analytical fragility estimates cannot be directly 

validated. 

As mentioned earlier in Chapter III, Section 3.4.2, the IDASS (Kunnath 2003) 

program was validated using the experimental test data on a GLD RC frame buildings 

and structural components by Bracci et al. (1992a) and Aycardi et al. (1992).  In this 

study, the probabilistic demand models are developed using the simulated response data 

obtained using IDASS.  Therefore, there is a higher confidence on the predicted inter 

story drift demands of sample buildings.  These predicted demands are used to develop 

the analytical fragility estimates of sample buildings.  Thus the developed analytical 

fragility estimates are party validated. 

6.5 COMPARISON OF ANALYTICAL FRAGILITY ESTIMATES 
 

In this section, the analytical fragility estimates developed for GLD RC frame buildings 

are compared with the analytical fragility estimates developed for similar buildings by 

Celik and Ellingwood (2006) and Hwang and Huo (1996).  Celik and Ellingwood 

developed fragility curves for a 3 story GLD RC frame building located in Memphis, 

TN.  Nonlinear time history analyses of a two-dimensional finite element model of an 
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interior frame in OpenSees (McKenna and Fenves 2006) was carried out by using 2% in 

50 years probabilistic ground motions for soft soil developed by Wen and Wu (2001) for 

Memphis, TN.  Using the simulated response data, probabilistic demand model in power 

form was developed. 

Figure 6.8 shows the comparison of median fragility estimates for 3 story building 

obtained in this study with the fragility estimates obtained by Celik and Ellingwood 

(2006).  The solid line represents the fragility estimate developed in this study using the 

predicted demand from bilinear demand model along with confidence bounds for the 

fragility estimates.  The dashed line represents the fragility estimates form Celik and 

Ellingwood study using the rigid joint model.  In general the fragility estimates are not in 

good agreement.  This may be due to the difference in idealization and assumption in 

structural models, ground motions, analysis software, and demand model form in each 

study. 
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(a) IO performance level (b) LS performance level 

 

 

 

 

 

 

 

 

 

(c) CP performance level 

 

Figure 6.8 Fragility estimates for 3 story RC frame building with confidence bounds for 
FEMA-356 performance levels (Demand is predicted using bilinear model) 

 

 

For example, Celik and Ellingwood (2006) used only 2% in 50 years probabilistic 

ground motion records for Memphis, TN, developed by Wen and Wu (2001) compared 

to 180 ground motions used in this study.  In addition, Celik and Ellingwood used a 

simple power model to develop the demand models.  Figure 6.9 shows the comparison 

of the analytical fragility estimates developed in this study using the predicted demand 

from single linear model with the Celik and Ellingwood (2006) fragility estimates. 
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(a) IO performance level  (b) LS performance level 
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Figure 6.9 Fragility estimates for 3 story RC frame building with confidence bounds for 
FEMA-356 performance levels (Demand is predicted using single linear model) 
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It is clear that the fragility estimates obtained using single linear model compare well 

with fragility estimates developed by Celik and Ellingwood (2006) than the fragility 

estimates obtained using the bilinear model. 

Hwang and Huo (1996) selected a 2 story RC frame building to represent the generic 

low-rise (1 to 3 story) RC frame buildings.  Nonlinear analysis of the structural models 

was carried out using two different ground motions in IDARC (Kunnath et al. 1991).  

Using the simulated response data, analytical fragility estimates for 2 story RC frame 

building were obtained for slight, moderate, extensive, and complete damage states. 

These damage states were defined using the damage index proposed by Park and Ang 

(1985). 

For comparison, slight, moderate, and extensive damage levels are related to FEMA- 

356 IO, LS, and CP performance levels.  Figures 6.10 and 6.11 show the comparison of 

analytical fragility estimates with confidence bounds for 2 story building obtained in this 

study using predicted demand from bilinear and single linear demand models, 

respectively with the fragility estimates obtained by Hwang and Huo (1996).  The solid 

line represents the fragility estimates developed in this study and the dotted line 

represents the fragility estimates developed by Hwang and Huo (1996).  In general, the 

fragility estimates developed by Hwang and Huo (1996) are not in good agreement with 

the fragility estimates developed in this study.  This may be due to the difference in the 

in the inter story drift capacity values for the FEMA-356 performance levels used in this 

study compared to the damage levels used in Hwang and Huo study. 
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(a) IO performance level   (b) LS performance level 
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Figure 6.10 Fragility estimates for 2 story RC frame building with confidence bounds 
for FEMA-356 performance levels (Demand is estimated using bilinear model) 
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(a) IO performance level   (b) LS performance level 

 

 

 

 

 

 

 

 

 

 

(c) CP performance level 

 
Figure 6.11 Fragility estimates for 2 story RC frame building with confidence bounds 
for FEMA-356 performance levels (Demand is estimated using single linear model) 

 

 

6.6 BIVARIATE FRAGILITY ESTIMATES 
 
It is well known that the seismic response of buildings is sensitive to the frequency 

content of the earthquake and the fundamental period of the building, 1T .  Therefore it is 
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important that the seismic fragility estimates account for the building period, even for 

rapid vulnerability assessment (Ramamoorthy et al. 2006b).  In general, for a single 

demand variable, the plot of fragility estimates as a function of the single demand 

variable is referred as the fragility curve.  When several variables are used to define the 

demand on the structural system or component, then ( )F S  defines a fragility surface 

over the space of demand variables, S .  In this study, bivariate fragility estimates, 

defined as the conditional probability of attaining or exceeding a specified performance 

level for given values of aS  and 1T   are developed using the fragility estimates of the 

sample buildings.  In Figure 6.12, corresponding to the 1T  of each of the five buildings 

considered, dots ( ) identify the values of aS  that corresponds to a fragility value from 

0.1 to 0.9 with a step of 0.1 (nine dots for each value of 1T ) for FEMA-356 IO 

performance level. 
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Figure 6.12 Contour plots of bivariate fragility estimates for FEMA-356 IO 

performance level (IO = 0.5% Inter story drift) 
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Fragility estimates of any 1 to 10 story building of general height ( h ) can be 

obtained by using a logarithmic interpolation function with aS  and 1T  as regressors.  In 

order to obtain continuous bivariate fragility estimates, two interpolation functions are 

developed.  The first interpolation function, developed for 1 0.87T ≥  sec., is written as: 

 ( ) ( ) ( )
( )

11 12 1
1 1 1

13 14 1

logˆ , ; a
a

S T
F S T

T
α α

α α
⎛ ⎞− +

= Φ⎜ ⎟⎜ ⎟+⎝ ⎠
α  (6.10) 

where 1 11 12 14( , ,.., )α α α=α  is a vector of unknown parameters that are estimated using 

the Bayesian approach.  Data from the ˆ ( ; )aF S Γ  estimates for 3, 6, and 10 story 

buildings are used for the statistical analysis.  A second interpolation function, 

developed for 10.00 0.87T< <  sec., is written as: 

 ( ) ( ) ( )
( ) ( ) ( )11 12 21

2 1 2 1
13 14 22

ˆ ˆlog 0.87 logˆ , ; 0.87
ˆ ˆ 0.87

a a
a

S S
F S T T

α α α
α α α

⎛ ⎞− + −
= Φ + −⎜ ⎟⎜ ⎟+⎝ ⎠

α  (6.11) 

where 1 11 14ˆ ˆ ˆ( , ,  )=α Kα α  represents the mean of 1α  in the first interpolation function and 

2 21 22( , )α α=α  is a vector of unknown parameters.  Vector 2α  is estimated by using data 

from the ˆ ( ; )aF S Γ  estimates of 1 and 2 story buildings ( 1 0.87sec.T < ).  Tables 6.4 and 

6.5 list the point estimates of the parameters for FEMA-356 and pushover performance 

levels. The lines in Figure 6.12 represent the contour lines of the bivariate fragility 

estimates.  Each contour line in this plot connects pairs of values of aS  and 1T  that 

correspond to a level of fragility in the range 0.1-0.9.  Figures 6.13-6.16 show the 

contour lines of the bivariate fragility estimates for LS, CP, FY, and PMI performance 

levels, respectively.  The probability of reaching or exceeding a particular performance 

level (for example CP performance level) of a RC frame building (1 to 10 story) for a 

given 1T  and aS  can be obtained by using the contour plots of the bivariate fragility 

estimates or the interpolation functions. 

The contour lines of the bivariate fragility estimates shown in Figures 6.12-6.16 are 

obtained by using the fragility estimates of the sample buildings.  While the sample 

building configurations, member sizes, and joint details are chosen such that they are 
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representative of the GLD RC frame building inventory in the Mid-America Region, 

other options are also possible.  The bivariate fragility estimates in an average sense 

account for such variability because they are developed using five different realizations 

(one for each of the selected building height).  For this reason, the bivariate fragility 

estimates are believed to provide an accurate assessment of the seismic vulnerability of 

GLD RC frame buildings in the Mid-America Region. 

 
 
Table 6.4 Estimates of the unknown parameters of the bivariate fragility function 
(FEMA-356 performance levels) 

Parameter Performance level  Mean values
11α̂  −1.4297

12α̂  −0.5882

13α̂  0.4863
1α̂  

14α̂  0.0237

21α̂  33.6713

Immediate Occupancy 

2α̂  
22α̂  11.7658

11α̂  −1.0435

12α̂  −0.5021

13α̂  0.31111α̂  

14α̂  0.0851

21α̂  12.533

Life Safety 

2α̂  
22α̂  3.892

11α̂  −0.8408

12α̂  −0.3500

13α̂  0.36511α̂  

14α̂  0.0631

21α̂  6.4062

Collapse Prevention 

2α̂  
22α̂  2.6323
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Table 6.5 Estimates of the unknown parameters of the bivariate fragility function 
(Pushover performance levels) 

Parameter Performance level  Mean values
11α̂  −2.1432

12α̂  −0.1848

13α̂  0.6018
1α̂  

14α̂  −0.0405

21α̂  4.3385

First Yield 

2α̂  
22α̂  1.1316

11α̂  −1.7001

12α̂  0.0141

13α̂  0.5338
1α̂  

14α̂  −0.0102

21α̂  0.2450

Plastic Mechanism Initiation 

2α̂  
22α̂  0.4854

-
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Figure 6.13 Contour plots of bivariate fragility estimates for FEMA-356 LS 
performance level (LS = 1% Inter story drift) 
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Figure 6.14 Contour plots of bivariate fragility estimates for FEMA-356 CP 
performance level (CP = 2% Inter story drift) 
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Figure 6.15 Contour plots of bivariate fragility estimates for pushover performance level 
(First Yield) 
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Figure 6.16 Contour plots of bivariate fragility estimates for pushover performance level 
(Plastic Mechanism Initiation) 
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6.7 SUMMARY 
 

Fragility estimates are developed for GLD RC frame buildings using the probabilistic 

demand models and capacity values corresponding to FEMA-356 (2000) performance 

levels and damage levels obtained form pushover analysis.  Approximate confidence 

bounds are developed to represent the inherent epistemic uncertainties in the fragility 

estimates. 

The analytical fragility estimates developed in this study are compared with the 

fragility estimates developed for GLD RC frame buildings from previous studies by 

Celik and Ellingwood (2006) and Hwang and Huo (1996).  Bivariate fragility estimates 

are formulated as a function of spectral acceleration and fundamental building period.  

Fragility estimates of the sample buildings are used to estimate the unknown parameters 

of the bivariate fragility function.  The bivariate fragility estimates and can be used for 

rapid seismic vulnerability assessment of 1 to 10 story GLD RC frame buildings. 
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CHAPTER VII 

BAYESIAN UPDATING OF ANALYTICAL FRAGILITY ESTIMATES USING 

OBSERVED DAMAGE DATA 

7.1 INTRODUCTION 
 
To develop more robust fragility estimates, the analytical fragility estimates should be 

updated by using earthquake damage data or experimental test data of building systems 

and components if and when they become available.  This chapter presents a framework 

for updating the analytical fragility estimates with the observed damage data or 

experimental test data using the Bayesian methodology.  As an illustration of the 

framework, analytical bivariate fragility estimates developed in Chapter VI for 1 to 10 

story GLD RC frame buildings are updated by using the damage data of similar 

buildings from 1994 Northridge, California Earthquake (Ramamoorthy et al. 2006c). 

7.2 FRAMEWORK FOR UPDATING THE ANALYTICAL FRAGILITY 

ESTIMATES 

The Bayes’ updating rule given in Eq. (2.5) is used to develop a framework for updating 

the analytical fragility estimates.  Figure 7.1 shows the schematics of the updating 

framework.  Let 1 2( , , , )kα α α=α K  represent the parameters of an analytical fragility 

function.  The analytical fragility parameters α , are updated by using the observed 

damage data or experimental test data.  The details of the updating framework are 

presented in the following sections. 
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Figure 7.1 Schematics of the Bayesian updating framework 
 

 

7.2.1 Prior Distribution 
 

The posterior statistics of the parameters 1 2( , , , )kα α α=α K , of the analytical fragility 

estimates are used to obtain the marginal distribution for 1α , 2α , or kα .  Liu and Der 

Kiureghian (1986) developed two multi-variate joint distribution models that are 

consistent with the marginal distributions and covariance matrix of random variables.  In 

this study, the prior joint probability density function, ( )p α  of α  is constructed using 

the Nataf multi-variate distribution model developed by Liu and Der Kiureghian (1986).  

Thus, ( )p α  represents the existing knowledge obtained from the analytical fragility 

estimates. 

7.2.2 Likelihood Function 
 

The earthquake damage data or the experimental test data, y  enter the updating 

framework through the likelihood function.  Following Shinozuka et al. (2000), the 

likelihood function for updating the analytical fragility estimates is written as 

Posterior distribution 
of parameters 

( )f α  
Likelihood function 

( | )L α y  

Prior distribution 
of parameters 

( )p α  

Posterior statistics of 
parameters obtained from 
analytical method 

Earthquake damage data or 
experimental test data 

Importance sampling algorithm 
(Gardoni et al. 2002) 
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 ( ) ( ) ( ) 1

1 1 1
1

, , 1 ,i i
n x x

ai i ai i ai i
i

L S T F S T F S T
−

=

= −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∏  (7.1) 

where n  represents the sample size of the structural system or components in the 

surveyed damage data, ( )F  represents the fragility estimates for a specific state of 

damage that are obtained by relating the observed damage level with the structural 

performance level of buildings, and ix  represents the realizations of the Bernoulli 

random variable iX  with, ix  = 0 or 1 depending on whether or not the structural system 

or component sustains a particular damage level for given aS  and 1T. 

7.2.3 Posterior Distribution 
 

Posterior joint probability density function, ( )f α  of the parameters is obtained by 

combining the prior distribution and the likelihood functions.  ( )f α  incorporates both 

the previous information about α  included in ( )p α  and the new data included in L .  

Point estimates of the updated parameters are obtained using the importance sampling 

algorithm developed by Gardoni et al. (2002b). 

7.3 APPLICATION OF BAYESIAN UPDATING TO RC FRAMES 
 

This section presents an illustration of the Bayesian updating framework developed in 

Section 7.2.  The analytical bivariate fragility estimates for GLD RC frame buildings 

presented in Chapter VI are updated using damage data of similar buildings during the 

1994 Northridge, California Earthquake. 

7.3.1 Damage Data of RC Frame Buildings 
 
The Applied Technology Council (ATC) conducted building surveys to consistently 

gather and document building characteristics and performance during the 1994 

Northridge, California Earthquake.  The results of this survey were documented in the 

ATC-38 report (ATC 2000).  A total of 530 buildings were surveyed in the vicinity of 
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the 31 strong-motion stations in the Los Angeles area.  California division of mines and 

geology (CDMG) operated 18 stations, University of Southern California (USC) 

operated 7 stations, and U.S. Geological Survey (USGS) operated 6 stations.  Strong 

motion records and response spectra were available for 30 of the 31 recording sites 

where buildings were surveyed.  Figure 7.2 shows an example response spectra plots for 

the earthquake ground motions recorded at CDMG 24322. 
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Figure 7.2 Response spectra for earthquake ground motion recorded at recording station 
operated by California division of mines and geology (CDMG 24322) during the 1994 

Northridge, California earthquake (ATC-38) 
 

 

Based on structural materials and load resistance system, the surveyed buildings 

were categorized in terms of 15 model building types.  These model building types were 

considered to represent the entire building inventory in the United States.  The overall 

damage to the buildings was classified using four damage levels: None, Insignificant, 
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Moderate, and Heavy.  Table 7.1 lists the description of the damage observed 

corresponding to the four damage levels. 

 

 

Table 7.1 Damage state classification in ATC-38 (ATC 2000) 
General damage 

state 
Description 

None (N) No damage is visible either cosmetic or structural. 

Insignificant (I) Damage requires no more than cosmetic repair. No structural 

repairs are necessary.  

Moderate (M) Repairable structural damage has occurred. The existing 

elements can be repaired essentially in place, without substantial 

demolition or replacement of elements. 

Heavy (H) Damage is so extensive that repair of elements is either not 

feasible or requires major demolition or replacement. 

 

 

In this study, the damage data of RC frame buildings with rigid diaphragm is used 

for updating the analytical fragility estimates.  Table 7.2 lists the summary of damage 

data from ATC-38 for 1 to 10 story RC frame buildings.  For all buildings listed in Table 

7.2, fundamental building period, 1̂T  is estimated using Eq. (3.3) by assuming a uniform 

story height of 12 feet.  The maximum of the two horizontal aS  corresponding to 1̂T  is 

used as the seismic intensity measure. 
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Table 7.2 Earthquake damage data for low- and mid-rise RC frame buildings with rigid 
diaphragm (adapted from ATC-38) 

Building ID Number 
of stories Design date 

General 
damage 

state 
1̂T  (sec) Sa (g) 

CDMG 231-GZ-16 6 1966 M 1.40 0.21 
CDMG 231-GZ-17 8 1967 I 1.67 0.18 
CDMG 231-GZ-18 6 1963 M 1.40 0.21 
CDMG 322-SH-03 1 1965 I 0.46 1.18 
CDMG 322-SH-04 1 1960 H 0.46 1.18 
CDMG 385-MF-08 1 1970 M 0.46 0.60 
CDMG 386-SH-18 7 1965 H 1.54 0.43 
CDMG 463-AC-01 5 1971 I 1.25 0.11 
CDMG 567-GZ-05 9 1993 I 1.80 0.09 
CDMG 567-GZ-10 5 1980 M 1.25 0.11 
CDMG 579-S1-01 9 1924 I 1.80 0.09 
CDMG 688-RE-03 5 1965 I 1.25 0.23 

 

 

As discussed earlier in Chapter I, buildings in Western, Central, and Eastern United 

States are constructed following different building codes and construction practices.  

However, in general, GLD buildings that were designed and constructed before 1976 are 

considered to have similar characteristics across the different regions of United States.  

For example, non-ductile reinforcement details discussed in Chapter I were typical of old 

GLD buildings constructed across the United States.  Therefore, it is appropriate to 

update the fragility estimates of GLD buildings in the Mid-America Region using 

damage data of similar buildings from 1994 Northridge, California Earthquake.  It 

should be mentioned that the earthquake ground motions associated with the above 

damage data might not be representative for the Mid-America Region. 

7.3.2 Estimates of Updated Parameters 
 

The prior joint distribution of the parameters 1 11 12 14( , ,.., )α α α=α  and 2 21 22( , )α α=α  in 

Eq. (6.10) and Eq. (6.11), respectively, is constructed using the Nataf multi-variate 

distribution model developed by Liu and Der Kiureghian (1986).  The posterior statistics 
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of the parameters listed in Tables 6.3 and 6.4 are used to construct the marginal 

distributions of 11 12 14, ,..,α α α  and 21 22,α α . 

As mentioned earlier in Section 7.2.2, to estimate the likelihood value, the general 

damage state used for classifying the damaged buildings should be related to the 

structural performance level of buildings.  In this study, the damage levels (None, 

Insignificant, Moderate, and Heavy) are related to IO, LS, and CP performance levels 

specified in FEMA-356 (2000).  Table 7.3 shows the suggested relation between the 

damage levels specified in ATC-38 and FEMA-356 performance levels.  Using the 

relationship between the damage level and performance level given in Table 7.3, for 

each performance level, ix  is assigned 0 or 1 based on the level of damage sustained by 

each building.  For example, for IO performance level, 0ix =  if building sustains the 

‘None’ damage level, otherwise 1ix = .  Since all buildings have damage levels higher 

than ‘None’,  1ix =  for IO performance level.  Similarly, for LS performance level 0ix =  

if the building sustains the up to the ‘Insignificant’ damage level, otherwise  1ix = .  Thus, 

iX  will have different realizations based on the performance levels.  Table 7.4 lists the 

input data used for updating the parameters of bivariate fragility function corresponding 

to IO, LS, and CP performance levels. 

 Point estimates of the updated parameters of bivariate fragility function for IO, LS, 

and CP performance levels are obtained using importance sampling algorithm developed 

by Gardoni et al. (2002a) and are listed in Table 7.5.  The estimates now include the 

information content of the damage data.  The updated posterior means of the parameters 

are similar to the ones estimated based on the simulated data. 



 

 

93

 
Table 7.3 Relationship between the ATC-38 damage state and FEMA-356 performance 
level and classification of damage based on 1̂T  

General damage state FEMA-356 performance level 

None 

Insignificant 

Moderate 

Heavy 

Immediate Occupancy (IO) 

Life Safety (LS) 

Collapse Prevention (CP) 

 

 

Table 7.4 Damage data for calculating the likelihood value 
ix  

Building ID 
General 
damage 

state 
1̂T  (sec) Sa (g) 

IO LS CP 
CDMG 231-GZ-16 M 1.40 0.21 1 1 0 
CDMG 231-GZ-17 I 1.67 0.18 1 0 0 
CDMG 231-GZ-18 M 1.40 0.21 1 1 0 
CDMG 322-SH-03 I 0.46 1.18 1 0 0 
CDMG 322-SH-04 H 0.46 1.18 1 1 1 
CDMG 385-MF-08 M 0.46 0.60 1 1 0 
CDMG 386-SH-18 H 1.54 0.43 1 1 1 
CDMG 463-AC-01 I 1.25 0.11 1 0 0 
CDMG 567-GZ-05 I 1.80 0.09 1 0 0 
CDMG 567-GZ-10 M 1.25 0.11 1 1 0 
CDMG 579-S1-01 I 1.80 0.09 1 0 0 
CDMG 688-RE-03 I 1.25 0.23 1 0 0 

 

 

7.4 UPDATED BIVARIATE FRAGILITY ESTIMATES 
 
Bivariate fragility estimates for GLD RC frame buildings are obtained by using the mean 

values of the updated parameters listed in Table 7.5.  Figures 7.3-7.5 compare the 

contour plots of updated bivariate fragility estimates (thick lines) and analytical bivariate 

fragility estimates (thin lines) for IO, LS, and CP performance levels, respectively.  Even 
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for the limited sample of observed damage data, the updated fragility estimates and the 

analytical fragility estimates are almost identical. 

 

 

 
Table 7.5 Point estimates of the updated parameters 
Performance level Parameter Mean values of parameters 

  Prior values Updated values

11α̂  −1.4297 −1.4458 

12α̂  −0.5882 −0.5779 

13α̂  0.4863 0.4753 
1̂ 0.87T >  

14α̂  0.0237 0.0254 

21α̂  33.6713 32.4183 

Immediate Occupancy 

1̂ 0.87T ≤  
22α̂  11.7658 11.3726 

11α̂  −1.0435 −1.0406 

12α̂  −0.5021 −0.5008 

13α̂  0.3111 0.3129 1̂ 0.87T >  

14α̂  0.0851 0.0983 

21α̂  12.533 12.747 

Life Safety 

1̂ 0.87T ≤  
22α̂  3.892 3.937 

11α̂  −0.8408 −0.8366 

12α̂  −0.3500 −0.3537 

13α̂  0.3651 0.3647 1̂ 0.87T >  

14α̂  0.0631 0.0672 

21α̂  6.4062 6.8502 

Collapse Prevention 

1̂ 0.87T ≤  
22α̂  2.6323 2.8243 
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Figure 7.3 Contour plots of updated fragility estimates for FEMA-356 IO performance 
level (IO =0.5% inter story drift) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4 Contour plots of updated fragility estimates for FEMA-356 LS performance 
level (LS =1% inter story drift) 
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Figure 7.5 Contour plots of updated fragility estimates for FEMA-356 CP performance 
level (CP =2% inter story drift) 

 

 

Table 7.6 lists the mean aS  for the 1994 Northridge, California Earthquake and the 

synthetic ground motions for Memphis, TN, used for developing the analytical fragility 

estimates.  It is clear that the information content of the damage data used for updating 

are consistent with the simulated response data used for developing the analytical 

fragility estimates. 

 As mentioned earlier in Section 7.1, to develop more robust fragility estimates, the 

fragility estimates should be updated as and when new damage data or experimental data 

are available.  To reduce error and inconsistency in the observed damage data, surveying 

methods should also be improved and standardized.  Furthermore different relations 

between the damage states and performance levels can lead to different fragility 

estimates. 

 

 No failure 
 Failure 

ˆ ( , ; ) 0.9aF S T =α  
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Table 7.6 Comparison of aS  for the 1994 Northridge, California Earthquake and synthetic ground motions for Memphis, TN 
Wen and Wu 

(2001) Rix and Fernandez (2004) 
Building ID 1̂T  (sec) aS  (g) 

2% in 50 yrs. 6.5d10ab* 6.5d10fa† 7.5d20ab 7.5d20fa 
CDMG 231-GZ-16 1.40 0.21 0.40 0.22 0.60 0.32 0.99 
CDMG 231-GZ-17 1.67 0.18 0.37 0.19 0.56 0.27 0.93 
CDMG 231-GZ-18 1.40 0.21 0.40 0.22 0.60 0.32 0.99 
CDMG 322-SH-03 0.46 1.18 0.86 0.44 0.71 0.56 0.85 
CDMG 322-SH-04 0.46 1.18 0.86 0.44 0.71 0.56 0.85 
CDMG 385-MF-08 0.46 0.60 0.86 0.44 0.71 0.56 0.85 
CDMG 386-SH-18 1.54 0.43 0.37 0.20 0.58 0.30 0.97 
CDMG 463-AC-01 1.25 0.11 0.45 0.24 0.67 0.36 0.96 
CDMG 567-GZ-05 1.80 0.09 0.32 0.15 0.52 0.25 0.90 
CDMG 567-GZ-10 1.25 0.11 0.45 0.24 0.67 0.36 0.96 
CDMG 579-S1-01 1.80 0.09 0.32 0.15 0.52 0.25 0.90 
CDMG 688-RE-03 1.25 0.23 0.45 0.24 0.68 0.36 0.96 

* represents moment magnitude 6.5, hypo-central distance of 10 km and Atkinson and Boore (1995) model 

† represents moment magnitude 6.5, hypo-central distance of 10 km and Frankel et al. (1996) model 
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7.5  SUMMARY 
 

In this chapter, a Bayesian framework is presented to update the existing analytical 

fragility estimates using observed damage data or experimental test data.  The updating 

process enables the incorporation of different types of information, including 

experimental test data and damage data as new data become available.  With the 

availability of new data, the posterior statistics of the parameters of the previously 

updated fragility estimates can be used as the prior estimates in the Bayesian updating 

framework.  As an illustration of the updating framework the analytical bivariate fragility 

estimates for GLD RC frame buildings are updated using the damage data of similar 

buildings during the 1994 Northridge, California Earthquake.  The updated fragility 

estimates and the analytical fragility estimates are almost identical. 
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CHAPTER VIII 

FRAGILITY ESTIMATES FOR RETROFITTED BUILDINGS 

8.1 INTRODUCTION 
 

It was shown in Chapter VI that existing GLD RC frame buildings in the Mid-America 

Region are vulnerable to moderate and high intensity seismic events.  Several retrofit 

strategies are available to enhance the seismic performance of these existing buildings.  

Selection of a particular retrofit strategy is a complex process and depends on several 

factors that include technical, financial, and sociological considerations. 

Previous work by Bracci et al. (1992b and 1995b) and Dooley and Bracci (2001) on 

GLD RC frame buildings identified that the column-to-beam strength ratio at beam-

column joints is a key structural parameter in controlling seismic damage.  As mentioned 

earlier, GLD RC frame buildings are prone to sidesway mechanisms due to low moment 

capacity of columns as compared to the beams at a beam-column joint.  Since these 

buildings are not designed and detailed for lateral loads, during moderate to severe 

seismic events they will exhibit story mechanism.  For low-rise RC frame buildings 

designed in Chapter III, the average column-to-beam strength ratio is in the range of 0.5 

to 0.8.  This is significantly less than the current ACI-318 (2005) recommended value of 

1.2.  In an effort to enhance the seismic performance of the low-rise GLD RC frame 

buildings, and evaluate effectiveness of structural retrofitting, fragility estimates are 

developed based on a structural model with column-to-beam strength ratios of 1.2 and 1.8 

for 2- and 3 story buildings. 

8.2 RETROFIT STRATEGY 
 

Out of several retrofit strategies, column strengthening leads to a significant increase in 

seismic lateral loading capability for moment resisting frame structures.  An efficient and 

modest retrofit technique based on column strengthening can be accomplished by column 

jacketing, where an existing column section is enlarged with new concrete and additional 

reinforcement is used in the new concrete (Bracci et al. 1992b and 1995b). 
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The column-to-beam strength ratio of mid-rise buildings is significantly higher than 

the low-rise buildings.  Furthermore, it is unrealistic to increase the column size for 1 

story moment frame buildings.  Therefore, in this study, only 2- and 3 story buildings 

retrofitted by column-to-beam strength ratios of 1.2 and 1.8 are used to are investigated to 

study the influence of column strengthening on the seismic performance. 

For the analytical models of the retrofitted buildings in IDASS (Kunnath 2003), the 

increase in column-to-beam strength ratio is achieved by altering the column moment 

strength versus curvature.  Figure 8.1 shows the moment-curvature relationship for 

columns of 2 story building with column-to-beam strength ratio of 0.5, 1.2 and 1.8, 

respectively.  It is important to note that the initial stiffness of the retrofitted column 

response is unchanged compared to the original column in order to evaluate the influence 

of increased column strength on the fragility estimates.  In general, this is a conservative 

assumption for design considerations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1 Moment-curvature relationship of columns in original and retrofitted 2 story 
building 
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strength ratio 



 

 

101

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5
-3

-2

-1

0

1

2

3

4

ln
 δ

 (%
)

ln  Sa (g)
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5

-3

-2

-1

0

1

2

3

4

ln
 δ

 (%
)

ln  Sa (g)

8.3 PROBABILISTIC DEMAND MODELS AND CAPACITY VALUES FOR 

RETROFITTED BUILDINGS 

Nonlinear time history analysis of the retrofitted buildings is carried out in IDASS using 

the synthetic ground motions described in Chapter IV.  Figures 8.2 and 8.3 show the plots 

of response data in logarithmic space, ln( )δ  versus ln( )aS  for 2- and 3 story buildings 

with column-to-beam strength ratios of 1.2 and 1.8, respectively.  Comparison of the 

transformed response data for the retrofitted buildings (Figures 8.2 and 8.3) with the 

original buildings (Figure 4.1) show that the there is a significant reduction in the scatter 

of the response data.  The solid dots (●) represent Type I data, the stars ( ) represent Type 

II data, and the triangles ( ) represent the ‘lower bound’ data (Type III).  Dispersion of 

the simulated response data is significantly less for retrofitted buildings compared to the 

original buildings. 

 

 

 

 
 

 

 

 

 

 

 

(a) Column-to-beam strength ratio =1.2        (b) Column-to-beam strength ratio =1.8 

 
Figure 8.2 Peak inter story drift response data from nonlinear time history analysis of 

retrofitted 2 story building 
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(a) Column-to-beam strength ratio =1.2        (b) Column-to-beam strength ratio =1.8 

 

Figure 8.3 Peak inter story drift response data from nonlinear time history analysis of 
retrofitted 3 story building 

 

 

 

Using the simulated response data, probabilistic bilinear demand models of the form 

given in Eq. (4.3) are developed for the retrofitted buildings.  Using a Bayesian statistical 

analysis, the posterior statistics of the unknown parameters, 1 10 11 1 |( , , )
aD Sθ θ σ=θ  and 

2 21 2 |( , )
aD Sθ σ=θ , of the demand models for the retrofitted 2- and 3 story are obtained and 

are listed in Tables 8.1 and 8.2, respectively.  Comparison of the parameters of the 

bilinear model for the retrofitted buildings (Tables 8.1 and 8.2) with the original 

buildings (Table 4.2) show that the there is a significant reduction in the seismic demand 

for the same set of ground motion records.  In addition, for retrofitted buildings, the 

standard deviation of the model error in the elastic and inelastic range is significantly less 

compared to the original buildings.  Figures 8.4 and 8.5 show predicted drift demand 

(solid lines) using the bilinear models along with the one standard deviation confidence 

interval (dotted lines)for the retrofitted 2- and 3 story buildings, with column-to-beam 

strength ratios of 1.2 and 1.8, respectively. 

   Type I data 
     Type II data 

 Type III data 

   Type I data 
     Type II data 

 Type III data 
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Table 8.1 Posterior statistics of parameters in bilinear demand model for retrofitted 2 
story building 

Correlation coefficient Column-
to-beam 
strength 

ratio 

Range 
 

Parameter 
 

Mean 
 

Standard 
deviation 

 
oθ  
 

1θ  
 

σ  
 

10θ  0.4883 0.0618 1   

11θ  0.8895 0.0306 0.98 1  Elastic 
0.6%δ <  

1 | aD Sσ  0.1110 0.0082 0.04 0.03 1 

21θ  1.8905 0.0863 NA 1 0.17 
1.2 

Inelastic
0.6%δ >   2 | aD Sσ  0.6759 0.0594 NA 0.17 1 

10θ  0.5137 0.0577 1 0.98  

11θ  0.9004 0.0290 0.98 1  Elastic
0.6%δ <  

1 | aD Sσ  0.1110 0.0087 –0.01 –0.02 1 

21θ  1.5598 0.0580 NA 1 0.04 
1.8 

Inelastic
0.6%δ >   2 | aD Sσ  0.4387 0.0353 NA 0.04 1 

 

 

 

Table 8.2 Posterior statistics of parameters in bilinear demand model for retrofitted 3 
story building  

Correlation coefficient Column-
to-beam 
strength 

ratio 

Range 
 

Parameter 
 

Mean 
 

Standard 
deviation 

 
oθ  
 

1θ  
 

σ  
 

10θ  1.0360 0.0609 1   

11θ  0.9452 0.0245 0.98 1  Elastic 
0.6%δ <  

1 | aD Sσ  0.0960 0.0079 –0.01 –0.02 1 

21θ  1.7123 0.0624 NA 1  
1.2 

Inelastic
0.6%δ >   2 | aD Sσ  0.6097 0.0546 NA 0.25 1 

10θ  1.0826 0.0566 1   

11θ  0.9620 0.0229 0.98 1  Elastic
0.6%δ <  

1 | aD Sσ  0.0956 0.0074 0.02 0.02 1 

21θ  1.6340 0.0590 NA 1  
1.8 

Inelastic
0.6%δ >   2 | aD Sσ  0.5506 0.0472 NA 0.26 1 
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(a) Column-to-beam strength ratio =1.2 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

(b) Column-to-beam strength ratio =1.8 

 

Figure 8.4 Probabilistic bilinear model (BLM) for retrofitted 2 story building 
 

   Type I data 
     Type II data 

 Type III data 

   Type I data 
     Type II data 

 Type III data 



 

 

105

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5
-3

-2

-1

0

1

2

3

4

ln
 δ

 (%
)

ln  Sa (g)

 

 

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5
-3

-2

-1

0

1

2

3

4

ln
 δ

 (%
)

ln  Sa (g)

 

 

 
 

 

 

 

 

 

 

 

 

 

(a) Column-to-beam strength ratio =1.2 
 

 
 
 

 
 

 

 

 

 

 

 

 

 

 

(b) Column-to-beam strength ratio =1.8 

 
Figure 8.5 Probabilistic bilinear model (BLM) for retrofitted 3 story building  
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For the retrofitted buildings, inter story drift capacity values of 1%, 2%, and 4% are 

used for FEMA-356 IO, LS, and CP performance levels, respectively.  These capacity 

values are probably more representative for the retrofitted structure since it is expected 

that the increased moment capacity of the retrofitted columns will deter the story 

mechanisms.  In addition, inter story drift capacity values are also identified from 

displacement controlled pushover analysis.  Table 8.3 lists the drift capacity values for 

FEMA-356 and for pushover performance levels. 

 

 

Table 8.3 Median drift capacity values for retrofitted low-rise buildings (in % story 
height) 

Performance levels Buildings Column-to-beam strength 
ratio IO LS CP FY PMI 

1.2 1 2 4 0.83 1.61 2 story 1.8 1 2 4 1.29 3.55 
1.2 1 2 4 0.83 1.45 3 story 1.8 1 2 4 1.34 4.06 

 

 

8.4 FRAGILITY ESTIMATES FOR RETROFITTED BUILDINGS 
 

Fragility estimates for the retrofitted buildings are developed in a way similar to the 

original buildings.  The estimates of the parameters of the continuous fragility estimates, 

( )ˆ
aF S  for retrofitted 2- and 3 story buildings are listed in Tables 8.4 and 8.5, 

respectively.  Figures 8.6 and 8.7 show the ( )ˆ
aF S  estimates with confidence bounds for 

the retrofitted 2- and 3- story buildings, with column-to-beam strength ratios of 1.2 and 

1.8, respectively. 

Comparison of the fragility estimates for the retrofitted buildings (Figures 8.6 and 8.7) 

with the original buildings (Figures 6.3 and 6.4) show that the probability of attaining or 

exceeding a performance level for a given level of seismic demand is improved for 

buildings retrofitted by column strengthening.  For example, Table 8.6 summarizes the 
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fragility estimates for CP performance level for the unretrofitted and retrofitted 2 and 3 

story buildings. 
 

 

Table 8.4 Estimates of the parameters of continuous fragility estimates for retrofitted 2 
story building 

Performance level  Parameters Column-to-
beam strength 
ratio   1λ  2λ  

+ 1σ  −0.9604 0.3805 
Median −0.8875 0.3860 Immediate Occupancy  
− 1σ  −0.8152 0.3776 
+ 1σ  −0.6281 0.4457 

Median −0.5399 0.4184 Life Safety 

− 1σ  −0.4622 0.3907 
+ 1σ  −0.2611 0.4553 

Median −0.1749 0.4220 Collapse Prevention 

− 1σ  −0.1006 0.3939 
+ 1σ  −1.0461 0.3655 

Median −0.9801 0.3804 First Yield 
− 1σ  −0.9917 0.3796 
+ 1σ  −0.7375 0.4324 

Median −0.6518 0.4126 

1.2 

Plastic Mechanism 
Initiation 

− 1σ  −0.5740 0.3882 
+ 1σ  −0.8700 0.3829 

Median −0.8182 0.3774 Immediate Occupancy  
− 1σ  −0.7680 0.3668 
+ 1σ  −0.4356 0.4103 

Median −0.3812 0.3908 Life Safety 

− 1σ  −0.3319 0.3730 
+ 1σ    0.0112 0.4088 

Median   0.0630 0.3913 Collapse Prevention 

− 1σ    0.1105 0.3758 
+ 1σ  −0.7142 0.3990 

Median −0.6596 0.3850 First Yield 
− 1σ  −0.6086 0.3692 
+ 1σ  −0.0655 0.4092 

Median −0.0135 0.3913 

1.8 

Plastic Mechanism 
Initiation 

− 1σ  −0.0341 0.3754 
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Table 8.5 Estimates of the parameters of continuous fragility estimates for retrofitted 3 
story building 

Performance level  Parameters Column-to-
beam strength 
ratio  1λ  2λ  

+ 1σ  −1.4134 0.3738 
Median −1.3222 0.3957 Immediate Occupancy  
− 1σ  −1.2276 0.3944 
+ 1σ  −1.0548 0.4545 

Median −0.9382 0.4300 Life Safety 

− 1σ  −0.8345 0.4024 
+ 1σ  −0.6500 0.4681 

Median −0.5351 0.4337 Collapse Prevention 

− 1σ  −0.4361 0.4042 
+ 1σ  −1.5056 0.3585 

Median −1.4260 0.3927 First Yield 
− 1σ  −1.3381 0.4025 
+ 1σ  −1.2290 0.4252 

Median −1.1201 0.4187 

1.2 

Plastic Mechanism 
Initiation 

− 1σ  −1.2290 0.4252 
+ 1σ  −1.3816 0.3705 

Median −1.3013 0.3904 Immediate Occupancy  
− 1σ  −1.2175 0.3909 
+ 1σ  −0.9995 0.4450 

Median −0.8968 0.4220 Life Safety 

− 1σ  −0.8047 0.3968 
+ 1σ  −0.5735 0.4561 

Median −0.4742 0.4254 Collapse Prevention 

− 1σ  −0.3875 0.3988 
+ 1σ  −1.2273 0.4076 

Median −1.1335 0.4064 First Yield 
− 1σ  −1.0431 0.3921 
+ 1σ  −0.5642 0.4561 

Median −0.4650 0.4254 

1.8 

Plastic Mechanism 
Initiation 

− 1σ  −0.3785 0.3989 
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FEMA-356 performance levels Pushover performance levels 

 
(a) Column-to-beam strength ratio =1.2 

 

 

 

 

 

 

 

 

 
 

 

 

FEMA-356 performance levels Pushover performance levels 

 
(b) Column-to-beam strength ratio =1.8 

 

Figure 8.6 Fragility estimates with confidence bounds for retrofitted 2 story building 
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FEMA-356 performance levels  Pushover performance levels 
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Figure 8.7 Fragility estimates with confidence bounds for retrofitted 3 story building 
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Table 8.6 Fragility estimates for CP performance levels for original and retrofitted 
buildings 

( )aS g  Buildings Column-to-beam 
strength ratio 

0.0 0.2 0.4 0.6 0.8 1.0 

0.5 (unretrofitted) 0.000 0.006 0.345 0.797 0.956 0.991 

1.2 0.000 0.003 0.040 0.213 0.455 0.661 2 story 

1.8 0.000 0.000 0.006 0.071 0.232 0.436 

0.6 (unretrofitted) 0.000 0.152 0.776 0.965 0.995 0.999 

1.2 0.000 0.007 0.190 0.522 0.764 0.891 3 story 
1.8 0.000 0.004 0.149 0.466 0.722 0.868 

 

 

8.5 SUMMARY 
 

The existing GLD RC frame buildings in the Mid-America Region are vulnerable for 

moderate to severe seismic event.  To mitigate the economic loss and human casualties 

due to structural failure of GLD RC frame buildings, it is desired to improve the seismic 

performance of these buildings.  In general, the column-to-beam strength of GLD RC 

frame buildings is less than the current ACI 318 recommendation of 1.2.  For an 

imposed lateral load, these buildings are prone to sidesway mechanism.  By increasing 

the moment capacity of these columns the sidesway mechanism can be avoided. 

To demonstrate the effectiveness of a simple retrofit strategy for 2- and 3 story 

building, the columns of these buildings are retrofitted by strengthening the columns.  In 

the analytical models, the increase in column strength is achieved by changing the 

trilinear moment versus curvature relationship of the retrofitted columns so as to achieve 

column-to-beam strength ratios of 1.2 and 1.8. 

Probabilistic demand models and capacity values for various performance levels are 

obtained for the retrofitted buildings.  The fragility estimates of the retrofitted building 

are obtained in a way similar to the unretrofitted buildings.  From the plot of fragility 
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estimates, it is clear that there is a significant increase in the seismic performance of the 

retrofitted buildings compared to the unretrofitted buildings. 
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CHAPTER IX 

CONCLUSIONS 

9.1 SUMMARY AND MAJOR FINDINGS 
 

The Mid-America Region is susceptible to infrequent, but high intensity, earthquakes.  

However, most of the existing building and bridge infrastructure in this region was not 

designed to withstand for these high intensity earthquake events.  Therefore it is 

necessary to assess the seismic vulnerability of this infrastructure to develop appropriate 

hazard mitigation techniques. 

The focus of this report is to quantify the seismic vulnerability of low- and mid-rise 

gravity load designed (GLD) reinforced concrete (RC) frame buildings, which make a 

significant population of the inventory in this region.  To quantify the seismic 

vulnerability of buildings in this region, fragility estimates are developed for typical 

buildings that represent, in an average sense, the building inventory.  In the context of 

this study, fragility is defined as the probability of a building reaching or exceeding a 

certain performance level given a specific ground motion intensity parameter.  Fragility 

estimates developed from the observed damage data from previous earthquake ground 

motions are more representative of the building inventory and soil characteristics of that 

region.  However, in the absence of such data fragility estimates are developed using the 

simulated response data of the structural models of the generic buildings.  The key steps 

in the simulation procedure are: selection of ground motions, definition of generic 

buildings, and nonlinear analysis of structural models of generic buildings. 

 In this study, fragility estimates are developed for generic RC frame buildings of 1, 

2, 3, 6, and 10 stories tall that are representative of the Mid-America region.  A Bayesian 

methodology is used to develop probabilistic demand models to predict the drift demand.  

Performance levels specified in FEMA-356 and as computed by nonlinear pushover 

analyses are used as mean drift capacity values.  Approximate confidence bounds are 

developed to represent the epistemic uncertainties inherent in the fragility estimations.  
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The analytical fragility estimates developed in this study are compared with the fragility 

estimates developed for similar RC frame buildings by other researchers. 

 Bivariate fragility estimates are formulated as a function of spectral acceleration and 

fundamental building period, which is a function of building height.  The bivariate 

fragility estimates, in an average sense, account for the variability in building 

configurations, member sizes, and joint details, because they are developed using five 

different realizations (one for each of the selected building height).  For this reason, the 

bivariate fragility estimates are believed to provide an accurate assessment of the seismic 

vulnerability of GLD RC frame buildings in the Mid-America Region.  A framework is 

developed to update the analytical fragility estimates using damage data or experimental 

test data of building systems and components.  As an illustration of the updating 

framework, the bivariate fragility estimates obtained for GLD RC frame buildings were 

updated using the damage data from the 1994, Northridge, California Earthquake. 

 The fragility estimates indicate that low- and mid-rise GLD RC frame buildings are 

vulnerable to damage for a moderate to strong seismic events.  In order to minimize the 

economic and human loss, it is desired to mitigate the seismic vulnerability of these 

buildings.  In general, the GLD buildings have low column capacity compared to beams 

at a beam-column joint.  Due to low column-to-beam strength ratio, these buildings are 

prone to softstory mechanisms for an imposed lateral load.  In this study, it is shown that 

increasing the column strength of these buildings deterred the softstory mechanisms.  

The fragility estimates of the retrofitted buildings quantify the increase in the seismic 

performance compared to the original buildings. 

9.2 SIGNIFICANT CONTRIBUTIONS 
 

Important contributions identified in this study are listed below; 

1. Developed bi-linear probabilistic demand models that can properly account for 

inelastic and higher mode effects in RC frame buildings using the simulated 

response data.  These data were classified into equality and lower bound data 

based on the 5% inter story drift value used for validation of IDASS.  In addition 
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a Bayesian methodology was used for developing the probabilistic demand 

models. 

2. To quantify the seismic vulnerability of GLD RC frame buildings that are 

representative of the Mid-America Region, analytical fragility estimates were 

developed for generic RC frame buildings of 1, 2, 3, 6 and 10 story tall.  Since 

the seismic response of buildings is sensitive to the frequency content of the 

earthquake and the fundamental building period, bivariate fragility estimates, 

defined as the conditional probability of attaining or exceeding a specified 

performance level for given values of spectral acceleration and fundamental 

building period, were developed using the fragility estimates of the generic 

buildings.  The bivariate fragility estimates can be used to quantify the seismic 

vulnerability of 1 to 10 story GLD RC frame buildings in the Mid-America 

Region. 

3. Approximate confidence bounds on the fragility estimates are developed to 

reflect the inherent epistemic uncertainty in the predicted values. 

4. Following the Bayesian methodology, a framework was developed to update the 

analytical fragility estimates with damage data and experimental test data, as they 

become available.  As an application of the framework, the bivariate fragility 

estimates developed for GLD RC frame buildings were updated using the 

damage data from 1994, Northridge, California Earthquake. 

9.3 FUTURE RESEARCH 
 

Some of the future research needs related to the assessment of seismic vulnerability of 

buildings are listed below: 

1. A parametric study can be conducted to study the effect of different idealizations 

and assumptions involved in developing the structural models of buildings.  This 

study can help in estimating the epistemic uncertainty involved in structural 

modeling. 
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2. To obtain more robust estimates of demand and capacity, it is required to reduce 

the epistemic uncertainties.  Component and sub-assembly experimental test data 

of buildings can be used to quantify the epistemic uncertainties.  Furthermore, 

the experimental test data will help to validate and update the capacity and 

demand models.  The Bayesian methodology adopted in this work is suitable for 

this purpose. 

3. As explained earlier, to obtain more robust analytical fragility estimates, the 

observed damage data of similar buildings should be used.  However, there is 

considerable subjectivity involved in the survey of damage data of buildings and 

essential facilities.  Therefore there is a need to develop a systematic approach in 

surveying the damage data. 
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