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Vulnerability Function Framework for Consequence-based Engineering 
 
1.0 Introduction - Vulnerability Functions 
 
Consequence-based engineering is a new paradigm for seismic risk reduction across 
regions or interconnected systems (Abrams, 2002).  In CBE, the risk to a distributed 
infrastructure systems is quantified, evaluated and managed through an assessment and 
selective intervention process aimed at selected components of that system.   This process 
enables the benefits of alternate seismic risk mitigation strategies to be assessed in terms 
of their impact on the performance of the built environment during a spectrum of 
earthquake hazards and on the affected population. It is clear that components and 
systems that are dominant contributors to risk should receive the focus of attention in the 
assessment process underlying CBE.  These dominant contributors can be identified 
through the formalism of a probabilistic safety assessment, or PSA. 

A PSA is a structured framework for evaluating uncertainty, performance and reliability 
of an engineered system, and accordingly must play a central role in CBE.  It is 
distinguished from traditional deterministic approaches to safety assurance by its focus 
on why and how the system might fail and by its explicit treatment of uncertainties, both 
in the phenomena and in the analytical tools used to model them.  A PSA provides a basis 
for decision-making in the presence of uncertainty that can be scrutinized by the 
stakeholders of the project, audited independently by a building official or other 
regulatory authority, and updated periodically as circumstances warrant.  The move 
toward quantitative risk assessment began in the nuclear industry in the mid-1970’’s, and 
has accelerated in recent years as the benefits of quantitative risk analysis have become 
apparent in many fields (Ellingwood, 1999).   
 
One begins the PSA process by identifying limit states (LS), or conditions in which the 
system ceases to perform its intended functions in some way.  In a (narrow) structural 
engineering sense, such limit states for specific structural components and systems may 
be either strength or deformation-related (as discussed subsequently).  In a broader 
socioeconomic context, the LS may be related to repair costs (e.g., expressed as a 
percentage of replacement value) that are in excess of a desired amount, opportunity 
losses, or morbidity/mortality.   Limit state identification requires a thorough 
understanding of the behavior of the safety-related systems within the plant and the role 
of structural components and systems in ensuring acceptable behavior of such systems. 
With the limit states identified, the limit state probability can be expressed as, 
 

P[LS] = Σ P[LS|D = d] P[D = d]                                                      (1.0.1) 

 
in which D is a random variable (or random vector) describing the intensity of the 
demand on the system, and P[LS|D = d] is the conditional limit state probability, given 
that D = d, and the summation is taken over all possible values of D.  The probability P[D 
= d] defines the hazard (in earthquake engineering, the seismic hazard is defined by the 
complementary cumulative distribution function, P[D > d]), which can be determined for 
a specific site from the U.S. Geological Survey website (www.usgs.gov/).  The variable d 
is denoted the “control” or “interface” variable.  The conditional probability, P[LS|D = d] 
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= FR(x), is the fragility. The fragility of a component or system defines the conditional 
probability of its attaining a performance limit state, which may range from loss of 
function to incipient collapse, given the occurrence of a particular operational or 
environmental demand.  Eq (1.0.1) shows that assessment of structural fragility is a key 
ingredient of any PSA.  Furthermore, fragility provides a probabilistic measure of safety 
margin with respect to design-basis or other events specified by a stakeholder.  Such a 
margin can be used to evaluate system weaknesses or deficiencies identified during an 
inspection or condition assessment and can provide a means to assess if the observed 
weaknesses or deficiencies might be expected to have a significant impact on system risk.  
The concept of a vulnerability (or vulnerability function) is integrally related to PSA and 
fragility assessment.   Modeling and engineering analysis provide a measure of response 
to a prescribed demand.  For example, structural analysis of a building for an ensemble of 
ground motions, characterized by a median spectral acceleration, yields a corresponding 
set of deformations.  Those deformations are uncertain, due to uncertainties in the ground 
motion as well as the dynamic properties describing the structure and the structural 
modeling process itself.  In turn, those deformations give rise to various states of damage 
and potential economic loss to structural and nonstructural components and systems.  
Those losses also are uncertain, due to uncertainties in the deformations, resulting 
damage, and the economic models used to model costs associated with different damage 
states.  The general concept of vulnerability, as used in this project, is as a term to 
describe the susceptibility of a system to serious consequences (expressed in monetary 
terms or other appropriate metrics). 
  
If the term LS in Eq. (1.0.1) is interpreted broadly as a structural state or a damage or 
economic state, then the mathematical descriptions of the PSA are similar.  This concept 
will be illustrated in Section 4 of this report. 

 

1.1 Fragility Curve (FC) 
 
As noted above, fragility (or vulnerability) can be described in terms of the conditional 
probability of a system reaching a prescribed limit state (LS) for a given system demand 
D = d, P(LS )dD = .  
 
Limit states related to structural behavior range from unserviceability to various degrees 
of damage including incipient collapse.  Demands can be in the form of maximum force, 
displacement caused by earthquake ground motions, or more generally a prescribed 
intensity measure of the ground motion, over a given period of time.  Expressed in this 
general manner, the fragility (or vulnerability) is a function of the system capacity against 
each limit state as well as the uncertainty in the capacity.  The capacity controls the 
central location of the FC and the uncertainty in the capacity controls the shape (or 
dispersion) of the FC (see Figure 1.1.1).  For a deterministic system with no capacity 
uncertainty, the FC is a step function.  Strictly speaking, FC is primarily a property of the 
system dependent on the limit state but depends very little on the system site seismic 
environment (an exception to this occurs when the facility is sited in proximity to the 
causative source of the ground motion, giving rise to so-called “near-field” effects).    In 
other words, identical systems located in regions of different seismicity will have the 
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same FC if the demand is structural response or force.  The FC will not be the same but 
similar for different sites if the demand is a prescribed excitation intensity measure such 
as spectral acceleration since spectral acceleration for higher modes would be different 
for different locations.  
 
A fragility analysis is an essential ingredient of the fully coupled risk analysis embodied 
in Eq.(1.0.1).  It also can be used to determine probabilistic safety margins against 
specific identified events for decision purposes.  Identification of probabilistic safety 
margins is central to modern engineered facility risk management.  Although providing a 
less informative measure of safety than that obtained from the fully coupled risk analysis 
in Eq. (1.0.1), risk-informed decision-making based on the results of fragility assessment 
has several advantages: 

(1) The probabilistic system analysis is effectively uncoupled from the hazard 
analysis.  Thus, while knowledge of the hazard is useful in identifying appropriate 
events for risk assessment purposes (e.g., a 2,475yr mean recurrence interval 
earthquake), such knowledge is not essential.  Absent credible data on such 
events, one might simply inquire as to the fragility were the design-basis event to 
be exceeded by some arbitrary margin, say 50 percent. 

 
(2) The need to interpret and defend very small limit state probabilities (on the order 

of 10-5/yr or less) is avoided.  There are limited data to support probabilities of 
this level, and such estimates are highly dependent on the probabilistic models 
selected.  At the current state-of-the-art, (conditional) fragilities are more robust 
than unconditional limit state probabilities. 

 
(3) A properly conducted fragility analysis is less complex, less costly, and involves 

fewer disciplines than a fully coupled risk analysis.  Accordingly, there is less 
likelihood of miscommunication among members of the risk analysis team and 
the results are more easily understood by a non-specialist stakeholder or decision-
maker. 

 
Fragility modeling of reinforced concrete, steel and masonry structural systems typical of 
construction in the Eastern United States is illustrated in Section 4 of this report. 
 
1.2 Limit State (LS) Probability and Displacement Demand Curve (DDC) 
 
To tie the vulnerability of a given system to the seismicity of the region, the seismic 
hazard needs to be included in the consideration. The vulnerability needs to be described 
in terms of probability of a set of given limit states being reached of a system at a given 
location over a given period of time (0, t).  Alternatively, the vulnerability can be stated 
in terms of occurrence rates of the prescribed limit states. In other words, a system of 
given capacity may be more vulnerable to earthquakes if it is located in a region of high 
seismicity than in a region of moderate or low seismicity.  Knowing the fragility curve, 
the limit state (LS) probability over the time period (0, t) can be evaluated (cf Eq. (1.0.1)) 
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Figure 1.1.2.  System Displacement Demand Curve (DDC) 
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∫ ==
∞

0
Dt dd)d(f)dDLS(P)LS(P        (1.2.1) 

 

in which fD(d) = the probability density function of the demand during (0, t), depending 
on the regional seismicity and ground excitation.  In other words, through Eq. 1.2.1 the 
fragility curve and the probabilistic demand curve are combined.  If the demand is in the 
form of a prescribed earthquake intensity measure such as maximum annual or 50- year 
spectral acceleration, fD(d) can be obtained from seismic hazard analysis.  Further more if 
the limit state can be described by the system response variable X exceeding a 
deterministic threshold x0 (or the fragility is described by the step function in Fig. 1.1.1) 
and the demand variable is a selected excitation intensity measure such as the annual 
maximum spectral acceleration Sa, the limit state probability is then 
 

∫ =≥=≥
∞

0
Sa00t ds)s(f)sSxX(P)xX(P a      (1.2.2) 

Different values of threshold x0 refer to different limit states.  A typical plot of the 
probabilistic performance curve in terms of response threshold is shown in Fig. 1.1.2. In 
this case, the probabilistic performance curve is often referred to as the displacement 
demand curve (DDC).  
Because of the uncertainty in capacity, the limit state threshold in general is a random 
variable. The limit state probability can be evaluated from the probabilistic demand curve 
and the probability distribution of the capacity C.  In other words, Eq. 1.2.2 can be 
rewritten as 
 

∫ ≥=
∞

0
Ctt dc)c(f)CX(P)LS(P        (1.2.3) 

in which )c(fC is the density function of the capacity. 
 
2. Methods for Determination of Vulnerability Functions 
 
Depending on the problem and information available, different methods can be used to 
evaluate the vulnerability of a system in terms of either FC or DDC. 
 
2.1 FC and DDC Analysis via an Excitation Intensity Measure 
 
To evaluate the vulnerability of systems under future earthquakes, the uncertainty in each 
element of the chain of events (Figure 2.1.1) from the seismic source to the structural 
response and their propagation needs to be accounted for.  A convenient approach, which 
has been used by the profession, is to select a scalar intensity measure of the excitation 
that can be correlated well with the system response.  Peak ground acceleration, velocity 
and displacement have been used in the past but generally have poor correlation with 
structural response.  Recent studies such as Luco and Cornell (2001) has shown that 
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measures including some of the structural properties such as those in terms of spectral 
accelerations with 5% damping of the first two modes elastic and inelastic response give  
  

 
 

 
 
 
 
 

 
 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 

 
 

Figure 2.1.1  Probabilistic Performance Evaluation and Design for Earthquakes 
 

 

much better results.  The linear elastic spectral acceleration is especially convenient since 
the probability of these parameters can be readily evaluated from the USGS National 
Earthquake Hazard Maps (2002) (www.usgs.gov). Once an intensity measure is selected, 
the next step is to establish the relation between system response and the intensity 
measure. 
 
 
 
 

Source: Seismic event occurrence time, magnitude, 
location, depth, rupture surface geometry

Path: distance, attenuation 

Site: Soil profile, intensity, ground acceleration (nonstationary random processes)

Design Considerations: limit states and associated acceptable  
babilities, treatment of uncertainty, LRFD format; damage and loss estima

Performance and Safety Evaluation: displacement, ductility, drift,  
serviceability, incipient collapse 

System Response:  soil-structural interaction, structural properties, stiffness 
, damping, nonlinearity, system response (nonstationary random process) 
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2.1.1 FC Analysis of a Linear Elastic System 
 

If the system stays within the linear range, the relationship can be constructed via a linear 
structural dynamic analysis using method of modal superposition. Since the relationship 
so established is analytical, only additional uncertainty is due to those in the structural 
modeling and response analysis method.  A functional relationship between structural 
response demand D and intensity measure S can be then described by  

             D = N g (S)          (2.1.1) 
 
in which g is the results of the dynamic and modal analysis and N is (random) correction 
factor for the uncertainty in the method of modeling and dynamic analysis.  Note that for 
a MDOF system and when more than one mode is considered, g may be a function of 
spectral accelerations of more than one mode. The relationship between these spectral 
accelerations depends on the excitation and separation of the modes.  The uniform hazard 
acceleration response spectra can be used for this purpose.  For a given value of S of the 
fundamental mode corresponding to a hazard level, the spectral acceleration 
corresponding to other modes are determined from the uniform hazard spectrum.     From 
Eq. 1.2.3 one can evaluate FC for given S and PPC by incorporating the seismic hazard 
information of S as given in Eqs 1.0.1 to 1.2.3.  For a given S = s, the only uncertainty is 
due to the modeling error and the mean and standard deviation of X are 
 
 )s(gNsSD µ≈µ =         (2.1.2) 

 
 )s(gNsSD σ≈σ =         (2.1.3) 

 
in which Nµ  is the bias factor and Nσ  is the uncertainty in the modeling and dynamic 
analysis.  With an appropriate chosen distribution for N, the FC is simply the probability 
of D exceeding the capacity of the system, C, corresponding to the given limit state 
which can be readily obtained as long the capacity (if deterministic) or its distribution (if 
probabilistic) is known.  The probabilistic performance function can be then evaluated 
according to Eq. 1.2.2 or Eq.1.2.3.    
 
2.1.2 FC of a Nonlinear Inelastic System 
 

Under severe seismic excitation, the system generally goes into the nonlinear inelastic 
range.  The relationship between D and S cannot be handled by modal analysis.  Time 
history response analyses under ground excitation with a given intensity measure are 
required. To cover a wide range of D, ground motions from low to high intensity 
reflecting the seismicity of the region are needed.  In areas where a large number of past 
records are available such as the western United States, these ground motion records can 
be screened and scaled for this purpose as was done in the SAC Steel Project [Somerville 
et al, 1997]. A proper intensity measure such as spectral acceleration may be used for the 
scaling such that a collection of wide range of intensity can be obtained.  These ground 
motions can be used for excitation in time history structural response analyses. A 
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regression analysis of the responses related to the limit state of interest as a function of 
the excitation intensity measure is then performed.  In view of the nonlinear nature of the 
problem and large scatter of the response due to record-to-record variation, a nonlinear 
regression analysis of the power-law form (Luco and Cornell, 2001) may be used since it 
is simple and flexible, 

 
D =  aSb         (2.1.4) 

A logarithmic transform of the above reduces it to a linear form 
 

   ln D = ln a + b lnS         (2.1.5) 

and a simple linear regression analysis can be then perform to determine the constants a 
and b which allow one to determine the conditional expectation of D given S,  sSD =µ   

and also the conditional coefficient of variation of D given S, sSD =δ .  Note that while 

the power law form allows straightforward linear regression analysis, other nonlinear 
equations may be used if they better fit the D/S relationship.  A proper distribution 
function (generally lognormal is a good fit) is then selected for D and based on which the 
FC curve can be determined.  For example, if the limit state capacity is given by a 
deterministic response limit, d, and there are no other sources of uncertainty, the FC is 
given by 

   FC = P(D )dln(1)sSd
β

λ−
Φ−==≥       (2.1.6) 

in which 2
sSD 2

1)ln( ς−µ=λ =  

 

       2
sSD1ln( =δ+=β ) 

 
Normally, there are other sources of uncertainty; they need to be incorporated into the 
above formulation.  The accounting and traction of uncertainty will be shown in later 
sections. 
 
2.1.3  DDC Analysis Using an Excitation Intensity Measure 
 
To obtain the unconditional limit state probability or the probabilistic performance curve, 
the seismic hazard analysis of the intensity measure is included and combined with the 
FC as shown in Eqs.1.2.2 and 1.2.3.  The integration in general can be carried out 
numerically.  It has been shown (Cornell et al 2002) that if the result of the seismic 
hazard analysis as given above can be approximately described by a power law  

 Ht(a) = k0a-k         (2.1.7) 

and the above lognormal distribution assumption for the demand given excitation is valid, 
Eq. 1.2.2 can be evaluated in a closed form  
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 Pt(D >d ) = Ht(ad) exp[
2

2

b

k
2
1

aSD2
a =β ]     (2.1.8) 

in which ad is the spectral acceleration level corresponding to the demand d according to 
Eq. 2.1.6.  Eq. 2.1.6 and 2.1.8 therefore describe the vulnerability of the system in terms 
of FC and DDC of the system if it exceeds a deterministic threshold corresponding to a 
limit state. Although the spectral acceleration has been used in most studies as the 
excitation intensity measure, other scalars can be considered, such as the combination of 
spectral accelerations at the first two modes for better correlation when higher mode 
effects are included.  Similarly, a combination of first mode elastic and inelastic spectral 
accelerations can be used for better correlation for inelastic systems.  In general, such 
improvements are achieved at the expense of more analytical and computational effort.  
The optimal intensity measure may also depend on the type of system investigated.  What 
is good for steel buildings may not as good for masonry buildings. 
 
The success of above procedure relies on the good predictive power of the excitation 
intensity measure S and the power-law regression equation of the structural response. 
This may not always be true when the system is complex and the response behavior is 
highly nonlinear and inelastic, such as with brittle connection failures observed for Pre-
Northridge construction.   For example, the higher mode effects, near-source effects, and 
detailed structural response behavior often cannot be predicted satisfactorily with any 
simple intensity measure, since in reality the structure response is a function of the whole 
ground excitation time history.  Any scalar intensity measure would fall short in 
predicting accurately the detailed structural response behavior.  Under such 
circumstances, the evaluation of the probabilistic structural demand can be evaluated 
directly using uniform hazard ground motions.   
 
2.1.4 DDC Analysis Using Uniform Hazard Ground Motions 
 
When uniform hazard ground motions are available for time history response analysis, 
such as in the ensembles corresponding to a given probability of exceedance level, one 
can take advantage of these motions to arrive at the DDC curve.  For example, in the 
SAC Project records were selected and scaled to match the uniform response spectra for a 
wide range of natural period and corresponding to 50%, 10% and 2% in 50 years 
exceedance probabilities at the site (Somerville et al, 1997).  In areas where such records 
are not available, such as in the eastern United States, synthetic ground motions 
corresponding to uniform hazard response spectra can be generated for this purpose (Wen 
and Wu, 2001). These ground motions represent future excitations due to events of 
various magnitudes, distances, and attenuation but all match the response spectra of given 
probability for a wide period range (Fig. 2.1.2). Since the matching was done at the 
median of the response spectra, the median of the structural response under the suite of 
the uniform hazard ground motion is a steady measure of the displacement demand 
corresponding to the probability of the ground motions.  Wen and Wu (2001) have shown 
that the median response obtained for both linear and nonlinear inelastic systems from the 
suite of ten uniform hazard ground motions has a small coefficient of variation (< 10%) 
and matches closely the response corresponding to the hazard level based on simulation 
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using large (9000) samples.   The DDC curve as shown in Fig. 1.1.2 can be then obtained 
by fitting a distribution (lognormal is generally a good model) through these three 
probability levels.  This is a more direct procedure without having to identify a proper 
intensity measure and perform the regression analysis.  Fig. 2.1.3 shows an example of 
such procedure for a steel building before and after retrofit in Carbondale Illinois.  
 
2.1.5 Demand on Spatially Extended Systems 
 
The treatment of demand uncertainty as mentioned in the foregoing is suitable for 
structures or systems that do not occupy a large area and can be approximated as a point 
system. For spatially extended systems such as long bridges, building stock and facilities 
in a community or a city, taken in the entirety, and transportation networks, additional 
considerations on the seismic demand are needed.  The demand on the systems obviously 
depends on the spatial correlation of the seismic excitation.  An independence assumption 
here could lead to serious underestimate of the uncertainty of the demand. The demands 
from the earthquake ground motion are positively correlated spatially and highly 
variable; this positive correlation causes the variation in the aggregated (basically 
summed) random damages and losses to increase significantly.  
 
Under the assumption that the excitation can be modeled by a stationary random process, 
the spatial correlation of random seismic waves at two different points during a given 
event can be described by a coherence function. The coherence function describes the 
correlation or dependence between two random processes, somewhat like the correlation 
coefficient between two random variables.  It is a function of the separation of two 
points, apparent wave propagation velocity, and frequency.  It can be determined from 
array records of past earthquakes. It allows one to model the correlation of excitations at 
any two points of the system and hence response of a spatially extended system via a 
random vibration analysis or simulation (e.g. Samaras et al 1983).  As seismic excitation 
frequency content and intensity clearly vary with time, a stationary process treatment is 
obviously an approximation.  Another correlation that needs to be carefully considered is 
the event-dependent intensity correlation.  In other words, during a large event, the 
excitation intensity would be high for an extended area, even though the excitations may 
not be highly correlated in time when the separation is large.  Similarly, during a small 
event, the intensity would be low for an extended area.  This correlation would play a 
significant role in total demand uncertainty. 
 
To include these correlations of demand on spatially extended systems, an event-based or 
scenario-type approach seems to be most suitable. The demand on the system can be 
described in terms of events of given magnitudes and distances. The deterministic 
scenario earthquake approach such as the worst-case scenario has been commonly used in 
the past.  Such an event of course has extremely small probability of occurrence. It does 
not give a true picture of the future seismic demand on the system and provides little 
information for long-term planning based on cost versus benefit.  For example, it may be 
the moderate and frequent events that cause the most damage/ cost to the systems. 
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Figure 2.1.2 Epicenters and magnitudes of events contributing to uniform hazard 
ground  motions for Memphis, Carbondale and St. Louis (number of events in the 
magnitude range is shown in the parentheses) (Wen and Wu 2001). 
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Figure 2.1.3. Probabilistic column drift ratio demand curve of a two-story steel 
moment frame building at Carbondale, IL before and after retrofit with shear walls 
(data points before retrofit [×], after retrofit [+], median value (o), and median 
including structural capacity uncertainty [ ]; dashed and solid lines indicate 
performance curve with and without consideration of capacity uncertainty) (Wen 
and Wu 2001). 

To consider all possible demands, simulation of future events can be used but is 
computationally impractical. To reduce computation cost, a method similar to the smart 
simulation method used in generating the uniform hazard ground motions looks 
promising. Events of various magnitudes and distances are first generated according to 
the regional seismicity and screened for each hazard level using the uniform hazard 
response spectra for the general location.  The response spectra may be the averaged 
value of different sites if the system occupies a very large area such as a transportation 
network.   As the response spectra are a good measure of demand on systems of wide 
range of frequency, the limited number of uniform hazard events after the screening (such 
as those given in Fig 2.1.2) would be representative of the future seismic demand on the 
spatially extended systems in a particular location.  Given the magnitude and distance of 
such an event, the system response to the event can be then evaluated using the most 
suitable method to incorporate the effect of spatially correlation.  For example, a 
coherence function matrix may be used in simulation of ground motions at different 
points.  Alternatively, a physical wave propagation type of approach such as the 
broadband procedure (Saikia and Somerville 1997) can be used for this purpose.  The 
spatial correlation in intensity may be accounted for via a simple procedure such as an 
intensity map for the given event. The median value of the system response to all events 
of the same hazard level will have a probability corresponding to the hazard level, from 
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which the system demand curve similar to Fig 2.1.3 can be obtained.  The spatial 
correlation can be therefore properly accounted for.  
 
2.1.6 Selection of Intensity Measure  
 
Proper selection of the intensity measure to relate structural performance is an important 
step in the vulnerability analysis. A good intensity measure would predict the structural 
response and hence the vulnerability accurately and efficiently.   In the past peak ground 
acceleration, peak ground velocity, peak ground displacement, and effective ground 
acceleration and velocity have been used for this purpose.  A recent study (Luco and 
Cornell 2001) showed that measures consisting of the spectral displacement of the first 
two modes of linear elastic systems, modal participation factors and inelasticity are good 
measures in terms of “efficiency” and “ sufficiency” for both far-source and near-source 
earthquakes.  Efficiency is a measure of the scatter in a regression analysis of the 
response against the intensity measure.  The smaller the scatter, the fewer the number of 
response analyses necessary to estimate the system capacity with the same accuracy.  
Sufficiency is a measure of the dependence of the response on the measure alone and not 
any other seismic parameters such as magnitude and distance of the event. The buildings 
used in that study are steel moment frames.  The conclusion may not be strictly valid for 
other type of the constructions.  The most effective intensity measure may be structure 
type dependent and needs to be investigated further. 
 
2.1.7 Intensity Measure versus Uniform Hazard Ground Motions 
 
The various intensity measures used by researchers such summarized in Luco and Cornell 
(2001) are all scalars derived from the ground motion time history and some of the 
structural properties such as natural period, participation factor, and inelastic response.  
Such intensity measures cannot predict all structural response characteristics, particularly 
higher mode contribution and very complex response behavior such as brittle member 
failure observed in pre-Northridge steel buildings and various failure modes of masonry 
structures.  Such complex structural response behavior can be predicted only when the 
entire time history of the ground motions is used. This is the approach used in the 
uniform hazard ground motion method.  The effectiveness of the two approaches in 
predicting the vulnerability in terms of total analytical and numerical effort versus 
accuracy of the vulnerability prediction is an important subject for investigation in this 
project. 
 
 
2.2 Capacity Uncertainty and Modeling Errors  

Structural capacity is the maximum force, displacement, velocity, or acceleration that a 
member or a system can withstand without failure, or more specifically, without reaching 
a prescribed limit state.  The capacity is therefore dependent on the material properties, 
member dimensions, system configuration, the limit state under consideration, and 
methods and models used in describing the capacity.  As in the case of demand, both 



 17

(aleatory) randomness and (epistemic) uncertainty are important elements in the 
evaluation of capacity and need to be carefully considered.  

 
2.2.1 Material Properties 
 
The member and system capacity depend directly on the material strengths and 
stiffnesses, which are inherently random.  The randomness can be modeled by random 
variable based on test data.  It is common to use the first two moments, i.e. the mean and 
standard deviation (or coefficient of variation), to describe the central value and the 
variability. Normal, lognormal or Weibull distributions are commonly used for 
convenience.  The actual strength of the material of a given member generally differs, in 
some cases significantly, from the nominal values used in member capacity calculations 
during design.  The relation between the nominal value and the actual value therefore 
needs to be established to estimate the real member capacity.  The strength variability 
obviously depends on the material, manufacturing process, and sometimes the testing 
protocol.  In general, the variability in masonry and timber material strength is larger than 
those in reinforced concrete and steel.  Material property variability and test data up to 
1980 can be found in the report by Ellingwood et al (1980).  For example, the coefficient 
of variation of strength of timber varies in the range from 10 % to 30 % depending on 
species and in flexure or compression; and that of masonry walls from 10 % to 26 % 
depending on configuration and in compression or flexure.  The coefficient of variation 
of compressive and tensile strength of concrete is around 18 % and that of the yielding 
strength of steel reinforcement and steel rolled shapes is around 10 % or less.  Properties 
of construction material such as concrete and structural steel evolve over time.   Strength 
statistics of newer material such as high-strength steel and concrete may be found in more 
recent literature.  For example, statistics on yield and ultimate strength of structural steel 
under various environmental conditions can be found in the recent FEMA/SAC report 
(2001).   
 
2.2.2 Member Capacity under Monotonic Load 
 
The inherent randomness in the material property carries over to the structural members 
made of these construction materials.  In addition, there is randomness in the dimensions 
of the members and also the capacity refers to a particular limit state such as shear, 
bending, or buckling failure under monotonic or cyclic loading condition.  The 
randomness in terms of the bias (mean capacity/nominal capacity) and coefficient of 
variation of steel, reinforced concrete, masonry and glulam structural members (beams, 
columns, and walls) of various configurations and for various limit states can be found in 
Ellingwood et al (1980).  The majority of the bias factors are between 1.0 and 1.2 and the 
coefficient of variation is under 20 %.  The bias can be described by a normal 
distribution.  The difference between the two models is small when the coefficient of 
variation is small.   

2.2.3 Members Capacity under Cyclic Load- Damage Index 
 
For seismic loading, one is especially interested in the member capacity under cyclic 
loading since members in a structural system generally undergo stress reversals of 
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various amplitudes and the member may reach a limit state under combined action of 
large deflection and cumulative damage.  To account for both effects, various damage 
indices have been proposed.  The most widely used is the index developed by Park and 
Ang (1985) based on test results of 403 reinforced concrete members.  The index is a 
linear function of maximum displacement mδ and total hysteretic energy dissipation 
normalized by member ultimate displacement and monotonic loading uδ , and yield force 
Qy. 

m

u y u

D dE
Q

δ β
δ δ

= + ∫         (2.2.1) 

Different value of the index corresponds to different limit states such as 0.4 for serious 
damage and 1 corresponding to complete damage (collapse).  Test data show that the 
damage index capacity of reinforced concreted member can be modeled by a lognormal 
random variable with a mean value equal to 1.0 and a coefficient of variation of 0.53. It 
indicates that the randomness in the reinforced concrete member capacity is quite large.  
The index has been used in damage evaluation of buildings and other structures, e.g. Park 
et al (1985). 
 
2.2.4 Rotation Capacity of Steel Connection Members 
 
Following the large number of brittle fracture failures found in connections in steel 
moment frames of many buildings due to the 1994 Northridge earthquake, the capacity of 
connections against rotation demand under cyclic loading during earthquake excitations 
has attracted much attention in the structural engineering profession.  In the FEMA/SAC 
project (SAC 2000), a comprehensive testing program of a large number (120) of welded 
and bolted connections of various configurations has been carried out according to pre-
Northridge practice and for post-Northridge design in which many different 
improvements were incorporated.  Test results of hundreds of experiments prior to 1994 
were also analyzed. The connection rotation capacities for both pre- and post-Northridge 
connections were obtained.  The capacity is defined in accordance with two limit states; 
θp the rotation limit when plastic deformation occurs and θg, the rotation limit 
corresponding to severe damage that the gravity load carrying capacity of the member is 
compromised.  Test data generally show the dependence on the depth of the beam or the 
depth of the connection element of these capacities and large scatter. The mean values 
and standard deviations as linear functions of the depth of the beams were established 
from regression analyses of test results.  Depending on the specific connection type and 
the depth of the beam, the rotation capacity and variability in terms of these two statistics 
shows large variation. Such large variation of coefficient of variation for different 
connections could partly due to the small number of samples used in the regression 
analysis.  No distribution models were recommended for the capacity.  In view of the 
small sample size and large coefficient of the variation, selection of the distribution 
model should be done with care.  Note that with a distribution model, say a normal 
distribution, one can predict the probability of limit state of plastic deformation or loss of 
gravity load carrying capacity of the connection member when the rotation demand dθ  is 
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known P(plastic deformation) = P( )dp θ<θ  = )(
p

pd

θ

θ

σ

µ−θ
Φ    (2.2.2)            

P(loss of gravity load carry capacity) = P( )dg θ<θ = )(
g

gd

θ

θ

σ

µ−θ
Φ                (2.2.3) 

 
The connection fragility is defined as the probability of capacity being exceeded given a 
specific demand.  
 
2.2.5 Bayesian Models of Member Capacity 
 
When calculating member capacity against a prescribed limit state, mathematical models 
based on mechanics are used.  In all mathematical models, there are errors associated 
with the assumptions and approximations of such model that it needs to be calibrated 
against experimental results or field observations.  Rigorous tracking of the uncertainty in 
the mathematical model based on our prior knowledge of the mechanical behavior of the 
components and calibrating the model against experimental data can be done via the 
Bayesian statistical method (Section 2.2.1).  Such a models have been recently developed 
for structural members by researchers (e.g., Gardoni et al 2002, Sasani et al 2001).  The 
basic concept behind this method can be illustrated by a simple example as follows.  
Consider a structural member model predicting the member capacity, y, against a 
prescribed limit state by the following equation 

 y = g (θ; x ) + ε         (2.2.4) 
  

in which θ = θ1,θ2, ....θk denotes the set of the parameters for the mathematical model; x 
= x1, x2,….xn represents the sample values of y from experimental or field observations; 
ε  is a random variable representing the unknown errors in the model assumed to follow a 
normal distribution.  Within the context of such formulation, given the parameters θ, y is 
a normal random variable.  Calibrating of the model parameters in view of observational 
evidence is formulated by regarding the model parameters as random variables governed 
by distributions based on prior knowledge (such as mechanics principles, structural 
analysis methods, and engineering judgment/experience).  The parameters are calibrated 
(or updated in Bayesian terminology) in view of sample evidence of y as follows: 
 
       f ′′ (θ)=k L( θ)f’ (θ)         (2.2.5)  
 
in which f ′ (θ) = the prior distribution of the model parameters;  L(θ) is the sample 
likelihood function or the conditional probability of observing x given θ ; and k is the 
normalizing constant.  Note that the epistemic uncertainty such as those associated with 
knowledge and modeling errors including those due to small sampling (small n) is 
included in the formulation.  In general, for small n and sharp f ′ (θ), i.e., strong 
knowledge based information and weak observational information, the prior distribution 
dominates.  On the other hand, if f ′ (θ) is flat or diffuse and n is large, then 
L(θ) dominates.  The overall uncertainty in the posterior distribution f ′′ (θ) is less than 
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either f ′ (θ) or L(θ).  One of the advantage of the Bayesian method is that even 
incomplete data of x such as those in the form of upper or lower bound due to certainty in 
the data collecting process or experimental procedure can be incorporated into L(θ) 
without difficulty.  The method has been applied to evaluation of the capacity of circular 
reinforced concrete bridge columns and shear walls against deformation and shear 
demand due to cyclic loads.  The advantage of this model compared with deterministic 
models was also shown.  Fig. 2.2.1 shows the result of the probabilistic prediction of the 
capacity of RC column against drift ratio demand, i.e. the conditional probability of 
failure of the column given that it reaches a drift ratio (or fragility curve).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 

 
Figure 2.2.1.  Probabilistic Capacity of RC Column against Drift (Gardoni et al 

2002) 
 
 
 
2.2.6 Uncertainty in System Capacity 
 
The description of uncertainty in system capacity is more involved since a structural 
system consists of many components and the system behavior is complex under dynamic 
excitation, especially when the system goes into nonlinear range.  The system capacity  
can be therefore more conveniently described in terms of the system limit states of 
interest.   

 
2.2.6.1 System Capacity against Damage 
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Commonly used system limit states are those corresponding to different damage states 
and performance levels.  For example in SEOAC Vision 2000 (1996), there are five 
performance(damage) levels: fully operational (negligible), operational (light), life 
safe(moderate), near collapse(severe), and collapse(complete) and each level is related to  
a structural (and nonstructural) response level indicated by a transient and a permanent 
drift limit.  In the FEMA/SAC project for steel buildings, the performance/damage levels 
were reduced to two: immediate occupancy and collapse prevention. The system capacity 
is again described in terms of interstory drift angles.  The uncertainty in the system 
capacity therefore can be described in terms of the drift capacity for different 
performance levels, such as the median drift capacity and its coefficient of variation.  The 
commonly accepted distribution for the capacity is the lognormal distribution for its 
convenience in reliability analysis and reliability-based design, as will be seen in the next 
section. Structures of different construction material, configurations, and designs have 
different drift thresholds [e.g., FEMA 273]. Determination of drift capacities for different 
performance levels is largely a process of combination of analysis and 
judgment/experience.  The determination of system collapse prevention capacity is 
discussed further in the following. 
 
2.2.6.2 System Capacity against Collapse-Incremental Dynamic Analysis 
 
Of all the limit states and the corresponding system capacities, system collapse is the 
most difficult to determine. The structural dynamics close to collapse is extremely 
complex and is still largely an unsolved problem due to nonlinear member and system 
response behaviors. The large record-to-record variation of ground motions and structural 
response behaviors further complicate the matter.  Collapse of structures under random 
excitations is a difficult mathematical problem of stochastic stability. Engineers have 
used an inelastic static pushover analysis in the past to estimate this capacity.  It provides 
insight into the structural response behavior at large displacement (Krawinkler and Sever 
1997; Gupta and Krawinkler, 2000) but considers the first mode static response only, 
which is basically different from dynamic response. As a result, such analysis generally 
over-predicts the response and underestimates the capacity.  

 
Improvements can be made by considering higher modes via modal pushover analysis as 
shown by Chopra and Goel (2002). Vamvatsikos and Cornell (2001) extended the 
concept of pushover analysis to dynamic response in the form of incremental dynamic 
analysis (IDA). The system capacity against collapse is evaluated by dynamic response 
analyses of the system under a suite of ground motion time histories such as the SAC 
ground motions, which are increased in intensity causing the structural response to 
increase from the linear elastic range into the nonlinear inelastic range and finally to the 
point where the structure finally becomes unstable, i.e. a large increase in response with a 
small increase in the spectral acceleration.  The displacement at this final point is defined 
as the system displacement capacity against collapse.  As mentioned earlier, due to the 
large record-to-record variation of the ground motions and extremely complex structural 
nonlinear behavior, the transition point is not always easy to pinpoint. Engineering 
judgments are often necessary and there are large scatters for different excitations with  
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Figure 2.2.2.  Results of Incremental Dynamic Analysis of 9-story Steel Moment-
Resisting Frame with Fracturing Connection under SAC Ground Motions 
(Vamvasitkos and Cornell 2002) 
 
the same spectral acceleration.   Fig. 2.2.2 shows an example of the interstory drift using 
DIA of a 9-story steel frame under SAC ground motions.  The uncertainty in capacity 
against collapse can be described in terms of the mean and standard deviation of the 
interstory drift capacity under multiple recorded ground motions from DIA. The 
coefficient of variation of this displacement capacity is generally on the order of 30%.  
Such a procedure has been used in the FEMA/SAC procedure. 
 
 
2.3 Structural Systems Limit State Probability (Reliability) Analysis  
 
In view of the large uncertainties in both demand and capacity, as shown in the previous 
sections, the performance of the structural systems can be described meaningfully only 
when these uncertainties are taken into consideration explicitly.  In other words, 
evaluation of the performance needs to be described in terms of reliability of the 
structural system against various limit states over a given period of time. Since the 
earthquake occurrence and the ground excitations and structural responses are random 
functions of time, the reliability problem is therefore a problem of a vector random 
process in time passing from a prescribed safe domain to an unsafe domain defined by 
the limit state.  A rigorous mathematical solution of the so-called “first passage” problem  
is generally difficult.  In reliability analysis, the random process first passage problem is 
often replaced by a more tractable formulation in which a structural performance function  
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corresponding to a given limit state is constructed in terms of a vector of random 
variables representing the uncertainty in the problem. The reliability problem is then 
solved using the first two moments of the random vector and a first-order or second-order 
approximation of the performance function.  Such methods are commonly referred to as 
the first order reliability method (FORM) or the second order reliability method (SORM).  
In earthquake engineering, an even simpler formulation of the problem is used in terms of 
two variables, demand versus capacity, as described in the previous sections, for a given 
limit state.  Alternatively, depending on the problem, a simulation method may be more 
suitable to evaluate the reliability.  These methods, their advantages and disadvantages in 
application to earthquake engineering are briefly described in the following. 

 
2.3.1 Identification of Important Limit State 
 
Performance levels or limit states for both structural and non-structural systems are 
defined in this document as the point in which the system is no longer capable of 
satisfying a desired function.  There are many types of performance levels in the field of 
earthquake engineering.  In addition, performance levels can be identified by qualitative 
and quantitative approaches.  Both methods are summarized below. 
 
Traditional Qualitative Approaches 
Qualitative approaches for identification of performance levels have traditionally been 
used in building codes.  In particular, most building codes require designers to ensure life 
safety of the occupants during factored loading and serviceability or functionality during 
unfactored loading.  FEMA 273, and its update FEMA 356, has the most comprehensive 
documentation on performance levels that are defined qualitatively and is briefly 
summarized below. 
FEMA 273/356 define performance levels related to the structural system as: 

(1) Immediate Occupancy (IO) - occupants are allowed immediate access into the 
structure following the earthquake and the pre-earthquake design strength and 
stiffness are retained;                                                                                              

(2) Life Safety (LS) - building occupants are protected from loss of life with a  
significant margin against the onset of partial or total structural collapse; 

(3) Collapse Prevention (CP) – building continues to support gravity loading, but 
retains no margin against collapse. 

 
In addition to the discrete structural performance levels, FEMA 273/356 also define 
structural performance ranges such as: 

(1) Damage Control (DC) – Range of structural damage between immediate 
occupancy and life safety; 

(2) Limited Safety Range (SR) – Range of structural damage between life safety and 
collapse prevention; 

 
FEMA 273/356 also defines non-structural performance levels as: 

(1) Operational - non-structural components are able to function as prior to the 
earthquake; 



 24

(2) Immediate Occupancy – building access and life safety systems generally remain 
available and operable; 

(3) Life Safety – non-structural damage that is not life threatening; 
(4) Hazard Reduced Range - damage that includes potentially falling hazards, but 

high hazard components are secured and will not fall.  Preservation of egress, fire 
suppression systems, and other life safety issues are not ensured; 

 
In terms of identifying overall building performance levels, FEMA 273/356 utilizes both 
definitions of structural and non-structural performance levels.  Analysis…uncoupled… 
It is important to note that these traditional performance level definitions are based on 
qualitative definitions.  For illustration purposes, FEMA 273/356 presents inter-story 
drift values that are typical for each structural performance level for the different types of 
structural systems in use.  For example in reinforced concrete frame structures, inter-story 
deformations of 1%, 2%, and 4% of the story height may be acceptable for IO, LS, and 
CP, respectively.  However, it is clear that deformation limits will depend on a variety of 
variables that include:  degree of section confinement and detailing; level of axial column 
load (P-delta effect); non-structural participation; and pre-existing damage. 
 
Quantitative Approaches 
Although current building codes and state-of-the-art publications have attempted to 
define the various performance levels for structural and non-structural systems, 
performance levels have only been identified qualitatively.  Therefore, designers have to 
determine quantitative response limits that correspond to the qualitative code 
descriptions.  Another approach for defining structural performance levels might be based 
on quantitative procedures using nonlinear pushover techniques.  These quantitative 
performance levels can be utilized by the designer and judged to supersede the qualitative 
performance levels in current building codes. 
Example performance levels that can be identified analytically using nonlinear pushover 
procedures are: 

(1) First Yield (FY) – Inter-story deformation at which a member of a story initiates 
yielding under imposed lateral loading; 

(2) Plastic Mechanism Initiation (PMI) – Inter-story deformation at which a story 
mechanism initiates under imposed lateral loading;   

 
For example, consider the portal frame in Fig.2.3.1(a).  Under imposed lateral loading, 
the story shear force versus inter-story deformation can be calculated using pushover 
techniques and hypothetically shown in Fig. 2.3.1 (b).  The FY performance level 
corresponds to an inter-story deformation at first member section yielding, shown at the 
base of the columns.  The PMI performance level subsequently occurs after both ends of 
the beam yield.  It is important to note that the sequence and form of member yielding 
during applied loading prior to the mechanism formation.  Both can have significant 
effects on the levels of structural deformability (capacity) in building structures. 
A key input parameter required in identifying such quantitative performance levels is the 
imposed lateral loading or deformations.  Since multi-story buildings are susceptible to 
high mode response and impulse-type loading during earthquakes, loading patterns that 
have been typically used for determining structural demands as in current building codes 
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may not be appropriate for identifying performance levels, which are capacities.  As 
such, the imposed lateral loading or deformation should be consistent with those that 
have the most critical consequence.  Fig. 2.3.2 shows the deformation pattern in a framed 
structure during inverted triangular lateral loading (similar to loading proportional to the 
fundemental mode shape of the structure) and during loading that might be critical for the 
second story of the building.  Fig. 2.3.2 (a) shows that the deformations are uniformly 
distributed throughout the building, where Fig. 2.3.2 (b) shows that the deformations on 
the second floor would be more impose more critical mechanisms on the second floor. 
 
 
 
 
 
 
 
 
 
   
      

(a)       (b) 
 

Figure 2.3.1  Pushover Analysis and Yield Formation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a)Inverted Triangular Loading /1st Mode Response         (b) Critical 2nd Story Response 
 

Figure 2.3.2.   Loading Patterns for Pushover Analysis 
 
From pushover analyses, a hypothetical comparison of the story shear vs. inter-story drift 
is shown in Fig. 2.3.3.  The figure shows that the previously described FY and PMI 
performance levels will depend on the imposed lateral loading or deformation patterns. 
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Figure 2.3.3.  Comparison of Story Shear with Interstory Drift in Pushover Analysis 
 
2.3.2 Demand versus Capacity Formulation  
 
The reliability problem is simplified considerably if the limit state can be stated in terms 
of the demand exceeding the capacity.   This statement may be an over-simplification, in 
that the capacity and demand may not always easily defined for certain limit states such 
as the case of system collapse discussed in the previous section.  In earthquake 
engineering applications, simplicity nevertheless offers some advantages, especially in 
code procedure formulation.  This is the method used in the reliability based, 
performance oriented design procedure proposed in the SAC/FEMA Steel Project 
(Cornell et al 2002), which is described in the following.    
Considering now the limit state described in terms of only two random variables; C 
(capacity) and D (demand), the performance function is now g(X) = C-D a linear 
function.  The probability of limit state over a given period of time, t , is then given by 
the probability integral 
 

Pt = Pt (C < D) = ∫ =≤ dd)d(f)dDDC(P Dt      (2.3.1) 

 
Simple closed form solutions of the integration can be obtained when both C and D can 
be modeled by normal or lognormal random variables.  
 

Pt = 1- )r(Φ            (2.3.2) 

DC
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DCr
σ+σ

µ−µ
=  , when both C and D are normal  

in which µ  and σ denote mean and standard deviation 
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r =
DC
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DC

β+β

λ−λ
, when both C and D are lognormal 

in which, )1ln( 2
xx δ+=β , and 2

xx 5.0ln β−µ=λ = ln x~ .   x~ = median value of X 
and Xδ  = coefficient of variation of X. 

 

This is not the case when the demand described by Eq. 2.3.1 is not a simple normal or 
lognormal variable.  The closed form solution, however, can still be obtained when the 
capacity variable C can be modeled by a lognormal random variable and the seismic 
hazard can be described by a power function as given in Eq. 2.1.7. 

 

2.3.3 FEMA/SAC Formulation 

When the uncertainty in the modeling and analysis is considered the limit state 
probability becomes a random variable and needs to be treated as such.  Depending on 
the application, for example, one may want to evaluate the mean value of the limit state 
probability to perform a risk/benefit analysis or evaluate the percentile value for a 
confidence interval estimate.  The uncertainty can be conveniently grouped into those in 
the hazard analysis, excitation/demand relationship, and structural capacity estimate.  For 
example, the parameters k0 and k in the seismic hazard model (Eq. 2.1.7), a and b in the 
regression equation for structural response (Eq.2.1.4), and the parameters in structural 
capacity models (Eqs.2.2.1 to 2.2.3) may all have uncertainty due to either modeling (e.g. 
incorrect functional form) or sampling (small number of test results) errors.  For 
simplicity and tractability in analysis, the uncertainties in the seismic hazard, structural 
demand, and structural capacity models are assumed to be lognormal variables with a 
median values given by the model predictions and dispersion parameters HUβ , DUβ , 
and CUβ . The subscript H, D, and C denote hazard, demand, and capacity respectively 
and U denotes uncertainty.  Similarly, the dispersion parameters of the randomness in the 
demand and capacity are denoted by DRβ , and CRβ .  Incorporating the uncertainty as 
defined above into Eq. 2.18, one can obtain the mean estimate of the limit state 
probability as follows: 

 E[Pt] = E[H( C~a )]exp[
2

2

b

k
2
1 ( DR2β +  )CU2CR2DU2 β+β+β ]  (2.3.3) 

in which  E[H( C~a )] = H( C~a )exp[
2
1

HUβ ]      (2.3.4) 

In other words, effects of randomness and uncertainty are now combined.  Note that the 
expected limit state probability is equal to the mean estimate of the hazard exceeding the 
median structural capacity multiplied by a correction factor that increases exponentially 
with the total uncertainty in the demand and capacity, and depends on the hazard and 
regression analysis parameters (k and b). The seismic hazard given in the USGS National 
Earthquake Hazard Maps is that of the mean hazard (Frankel et al 1997) with regard to 
modeling uncertainty, Eq. 2.3.3 is therefore compatible with the USGS hazard maps.   



 28

To estimate the percentile values for a confidence interval estimate, in principal all 
uncertainty dispersions need to be considered. In the FEMA/SAC procedure, it is 
assumed that the uncertainty in seismic hazard has been incorporated through the mean 
hazard curve in Eq.2.3.4.  The confidence interval estimate is then obtained as function of 
the demand and capacity uncertainty using the mean hazard curve.  The limit state 
probability corresponding to a percentile level q (probability of q not being exceeded) is 
given by 
 Pq,t = tP~ exp[Kq Lβ ]        (2.3.5) 

in which, tP~ = E[H( C~a )]exp[
2

2

b

k
2
1 ( DR2β +  CR2β )]      (2.3.6)  

Lβ =  )(
b

k
CU2DU2

2

2
β+β       (2.3.7)  

      Kq = )q(1−Φ         (2.3.8)  
 

tP~  is the median (50%) value of Pt . Note that the median estimate is the same as that 
considering only the randomness in the demand and capacity. The q percentile limit state 
probability is equal to tP~ multiplied by a factor depending on the uncertainty dispersion 
parameters and the percentile value.  Kq is the standard normal variate value 
corresponding to this percentile value.   
 
  
2.3.4 Method of Simulation 
 
2.3.4.1 Randomization of Capacity 
 
The simulation method can be applied to reliability evaluation when the structural 
capacity uncertainty is considered.  In a direct Monte-Carlo method, one needs only to 
randomize the capacity of the structure according to the randomness and uncertainty 
models as mentioned above in the time history analysis of the structure.  The limit state 
probability can be then calculated from the response statistics of the repeated time history 
analyses.   It is conceptually simple.  The difficulty is obvious that the randomization 
needs to be done for each element.  Also, as in the structural demand analysis, the 
computational effort may become excessive  

 
2.3.4.2 Uncertainty Correction Factors  
 
To incorporate the effect of capacity uncertainty into the simulation procedure and at the 
same time avoid the difficulty of detailed modeling at the component level as mentioned 
above, one can use a hybrid procedure.  The structure is first regarded as deterministic 
and the smart simulation is performed at a given hazard level, e.g. 50%, 10%, or 2 % in 
50 years to obtain the probabilistic structural demand curve, e.g., the median response to 
the set of uniform hazard ground motions (UHGM) corresponding to a hazard level as 
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shown in Fig. 2.1.3.  At a given hazard level, the effect of the uncertainty can be then 
incorporated by multiplying the median estimate by a correction factor similar to that 
given in Eq. 2.3.3.  As shown in Fig. 2.1.3, at a given hazard level such as 10% in 50 
years or 2% in 50 years, the demand described by the median response to the UHGM 
corresponds to the probability of exceedance considering the randomness and uncertainty 
(if included in the simulation in Section 2.1.4) in the excitation only.  To account for the 
randomness and uncertainty in the capacity and demand, the limit state probability is 
multiplied by a correction factor (Wen and Foutch 1997) 

 CF = T22S
2
11 δ+         (2.3.9) 

in which S is the sensitivity coefficient to the change in structural capacity depending on 
the seismic hazard and the median structural capacity; Tδ  is the coefficient of variation 
of the total randomness and uncertainty in the demand and capacity.  

UD2RD2UC2RC2
T δ+δ+δ+δ≈δ                    (2.3.10) 

in which RC, UC, RD, and UD denote randomness and uncertainty in capacity and 
demand. Alternatively, if the limit-state probability is kept the same, the median value 
can be multiplied by a correction factor CD to reflect the effect of total uncertainty as 
follows: 

  CD = T2S
2
11 δ+                                        (2.3.11)  

The seismic hazard, e.g., in terms of 50-year probability of exceedance of the spectral 
acceleration, can be generally modeled by a lognormal distribution.  If the hazard curve is 
not available, it can be determined directly from the UHGM.  The median values of the 
spectral acceleration of the UHGM at 10% and 2% in 50 years allow one to determine the 
two lognormal distribution parameters λ  and ζ .  The sensitivity coefficient S is then 
given by   

      S = 
2

Caln

ζ

λ−
                 (2.3.12)  

in which Ca  is the median capacity of the system in terms of spectral acceleration Sa .  
Note that when the hazard dispersion measure ζ  is large, S is small indicating that the 
the uncertainty in hazard dominates and the result is not sensitive to the structural 
capacity uncertainty.   
 
For example, in Fig. 2.1.3, the 50-year spectral acceleration hazard parameters for 
Carbondale Illinois are λ  = -6.85 and =ζ 2.07(Wen and Wu 2001), for the building with 
a fundamental natural period of T= 0.15 sec after retrofit.  The sensitivity coefficient S at 
10/50 and 2/50 hazard levels are calculated to be 0.618 and 1.0 respectively according to 
Eq.2.3.9.  Assuming a total uncertainty of Tδ = 50 % for the structural drift capacity 
against all limit states, the correction factor CF and CD are respectively 1.05 and 1.07 at 
10/50 hazard level 1.13 and 1.13 at 2/50 hazard level.  It is seen that the effect of the 
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demand and capacity total uncertainty is small since it is overshadowed by the large 
uncertainty of the seismic excitation (large value of the dispersion parameter ζ  in the 
Eastern United States. The median values can be then modified by the correction factors 
and fitted by a lognormal (dashed) curve as the risk curve of column drift capacity being 
exceeded as shown in Fig. 2.1.3. 

 

3.0 Application to Consequence Based Engineering 

The initial stage of the Consequence-Based Engineering (Abrams 2002) is rapid 
assessment of system performance.  At this stage refined and detailed uncertainty and 
vulnerability analysis are not required.  When the consequence determined from rapid 
assessement is not acceptable and parameters need to be refined, the damage synthesis 
consisting of more detailed analysis of the system demand, capacity, and vulnerability is 
then performed.  The different methods of vulnerability analysis as mentioned in the 
foregoing can be used most efficiently at various stages of the CBE. 

3.1  Fast evaluation of vulnerability  (no time history response/ regression 
analysis required) 

For region of low to medium seismicity, systems response may be within linear 
elastic range. For such linear elastic systems or nonlinear inelastic system that can be 
represented by an equivalent SDOF inelastic system, a relatively fast analysis of the 
vulnerability can be performed using the response spectrum without having going 
through repeated time history response analyses.  The method outlined in Eqs. 2.1.1 to 
2.1.3 can be used.  The excitation intenisty measure to be used in this case is the spectral 
acceleration  Sa.   As shown in Eq. 2.1.1 the structural response demand parameter D can 
be expressed as a function of Sa multiplied by a correction factor for uncertainty due to 
uncertainty in the simple method of analysis.  

For example, if the demand variable is maximum interstory displacement at a given 
floor and the excitation intensity measure is the spectral acceleration of the first mode, 

 

  D = Ng(S) ≈   N ∑ γ
=

n

1i

2aiii )S(g       (3.1.1) 

in which g is the relationship between D and S; N is the correction factor for modeling 
and analysis error and uncertainty. ig is the interstory drift due to i-th mode, and iγ is the 
modal participation factor. Si

a is the i-th mode spectral acceleration, which can be 
determined from the uniform hazard response spectra given the fundamental mode 
spectral acceleration and the corresponding hazard level.  The square root of sum of 
squares is used for an approximate evaluation of the combined maximum. Once the 
function g and the bias and uncertainty in the correction factor N are established, the 
probabilistic demand curve of D can be detemined as shown in Eq. 1.2.2, where both the 
modeling errors and seismic hazard are considered.  If the bias factor is assumed to a 
lognormal distribution and seismic hazard in terms of the annual maximum spectral 



 31

acceleration Sa, the probabilistic demand curve can be calcualted according to Eq. 1.2.2 
as follows, 

 Pt(D>d )= ∫
=

=

β

λ−
Φ− ds)s(f]}

dln
[1{

aS
sSD

sSD
              (3.1.2) 

in which  sSD
2

NsSD 2
1)s(gln == β−µ=λ  

 )1ln( N
2

sSD δ+=β =  

 =)s(f aS  density function of maximum spectral acceleration in (0, t) 

The uncertainty in the seismic excitation intensity measure and the bias ( Nµ = mean 
value of N) and uncertainty ( Nδ = coefficient of variation of N) in modeling and analysis 
are therefore properly combined by Eq.3.1.1. which can be easily integrated. Similarly, 
for an inelastic system which can be represented approximately by a SDOF inelastic 
system with a given deflection shape, the displacement demand can be approximated 
described by an uniform inelastic response spectrum. The spectrum in terms of the the 
system yield coefficient Cy (system yield force/system weight) and the system ductility 
ratio η  can be obtained from the uniform hazard acceleration spectrum of the linear 
systems (Nassar and Krawinkler 1992, Miranda and Bertero 1994, Collins et al 1996).  One 
can therefore establish the relationship between the ductility demand and the spectral 
acceleration for the linear systems as follows 
 
 η= Ng(S)         (3.1.3) 
 
in which g(S) is the functional relationship between ηand S based on the uniform hazard 
inelastic response spectra.  N is the correction factor for the bias and uncertainty in this 
approximate method.  Once the statistical parameters and distribution for N have been 
established, the probabilistic ductility demand curve can be obtained as outlined in Eqs. 
3.1.1 and 3.1.2. The probabilistic demand curve of the system can be used to evaluate the 
limit state probability as shown in Eq. 1.2.3 when the system capacity against a given 
limit state and its uncertainty are known. 
 
3.2   SAC/FEMA Approach based on Time History/Regression Anlaysis 

For a complex nonlinear inelastic system that cannot be satisfactorily approximated by an 
equivalent SDOF system, time history response analyses are required to evaluate the limit 
state probability.  The SAC/FEMA approach (as outlined in Eqs. 2.1.4 to 2.1.8) may be 
used to determine the probabilistic demand curve based on regression analysis of the 
system response under selected ground excitaion of a wide range of excitation intensity 
measure.   The capacity uncertainty and seismic hazard modeling error can be then 
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incorporated into the formulation to evaluate the limit state probability as outlined in Eqs. 
2.3.1 to 2.3.8. 

 

3.3 Vulnerability Evaluation Using Uniform Hazard Ground Motions 

For complex nonlinear inelastic systems that simple intensity measure may not be 
adequate to predict the system demand,  a direct prediction of the system displacement 
demand from time history analysis under uniform hazard ground motions may be used  to 
evaluate the limit state probability.  The method outlined in Section 2.1.4  may be used to 
evaluate the probabilistic demand curve.  The system capacity and uncertainty can be 
then incorporated to determine the limit state probability as outlined in Eqs. 2.3.4 to 
2.3.12. 

 

4.0  Demonstration of Vulnerability Function Framework for Buildings 

The proposed vulnerability analysis framework is demonstrated here by probabilistic 
displacement demand analysis, fragility curve analysis, and limit state probability 
analysis over a given period of some representative buildings structures in mid-America.  
The emphasis is on credible quantitative treatment of uncertainty in the chain of events 
from the seismic source to the structural limit state probability evaluation.  Although only 
building structures are studied, the procedure and treatment of uncertainty can be easily 
extended to other structures such as bridges and industrial facilities without difficulty. 
 

4.1  Masonry Buildings in Memphis 

The procedure is first demonstrated by a masonry commercial/residential building located 
in Memphis. A finite element model based on ABAQUS was developed to describe the 
nonlinear response behavior of the components and building system. Four wall damage 
modes, diagonal tension, bed-joint sliding, toe crushing and rocking are considered.  The 
performance of the building is measured by the wall drift ratio. Ground motions that were 
generated according to the regional seismicity and uniform hazard response spectra 
(discussed in Section 2.1.4) are used in this study. Structural response time histories are 
calculated for each of the ten uniform-hazard ground motions (UHGM). The UHGM 
based probabilistic demand analysis is also carried out.  The wall drift ratio is assumed to 
follow a log-normal distribution at each hazard level.  In addition, a power law is also 
used to establish the relationship between the spectral acceleration and the wall drift ratio 
(see Section 2.1.2, Eq. 2.1.4).  Vulnerability of this building in terms of fragility curve 
under a given spectral acceleration and 50-year limit state probability to various extent of 
damage according to FEMA 273 damage classification are then calculated.  To determine 
the capacity against collapse and its uncertainty for the incipient collapse fragility curve, 
Incremental Dynamic Analysis (IDA, Section 2.2.6.2) is also performed. The impact of 
the contribution from various uncertainty terms is discussed.   
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4.1.1 Uniform Hazard Ground Motions 

Due to the lack of data for ground motion of engineering interest, the ground motions 
required for vulnerability analysis were modeled by simulation (Section 2.1.4).  The 
uncertainties in occurrence time, source location, magnitude, attenuation, and soil 
amplification are modeled by random variables and are simulated using information on 
regional seismicity and up-to-date random vibration-based ground motion models.  Both 
point-source and finite-source models that are used in the simulation allow incorporation 
of some of the important near-source effects of large events.  The method can be used for 
fast simulation of large number of ground motions for a given site, from which suites of 
ten uniform hazard ground motions (UHGM) corresponding to a given probability of 
exceedance are selected by matching the response spectra with the uniform hazard 
response spectra.  The UHGM are then used for structural response analysis.  They 
represent events of various magnitudes, distance, and attenuation.  Their frequency and 
intensity are such that the median response of the structure gives an accurate estimate of 
the demand on structure for a given probability of exceedance.  In other words, the suite  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1.1 Sample time history and acceleration spectrum of the simulated 2/50 
ground motion at Memphis, Tennessee. 
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of ten ground motions allows one to evaluate the structural response of small probability 
of exceedance that normally required much larger number (thousands) of structural 
response analyses.  Two sets of ground motion corresponding to 10% in 50 years and  
2% in 50 years exceedance probability were generated. Figure 4.1.1 shows one sample of 
the time history and spectral acceleration response spectrum of the 2% in 50 years ground 
motions generated for Memphis, Tennessee.  Details of the method and results of can be 
found in Wen and Wu (2001). 
 
4.1.2  Modeling of Masonry Walls 
 
The nonlinear in-plane response behavior of unreinforced masonry (URM) walls is 
difficult to predict accurately. A general knowledge of the in-plane behavior of a solid 
wall, which does not have any opening, is a good start in understanding the in-plane 
behavior of a URM wall. The response behavior of an individual solid wall may be 
elastic in the beginning stage of the excitation, but as the intensity of ground motion 
increases, the response of the structure becomes inelastic and nonlinear. Based on 
FEMA-273 (NEHRP, 1997), four damage types common to a solid wall i.e., diagonal 
tension, toe crushing, bed-joint sliding, and rocking, ( see Figure 4.1.2) are considered. 
The damage type of each individual wall is determined by factors such as wall aspect 
ratio, gravity loads, and the strength of the wall. The damage types mentioned above 
adequately describe the behavior of a wall that is solid.  
 
In reality, however, the walls of most masonry buildings are often perforated. The 
mechanics and behavior of a perforated wall are more difficult to describe analytically. 
For this reason, a rational but simplified lumped-parameter model is often used that can 
reasonably and efficiently describe the non-linear in-plane response of URM walls. The 
simplification of an in-plane URM wall response carries the assumption that the critical 
case (e.g. bed-joint sliding or other damage type) will dominate the non-linear behavior 
of the wall. The critical case is determined by examining the sum of lateral strengths for 
each damage type of each single component (solid wall). The component that has a 
minimum lateral strength is then chosen as the dominant type of wall damage.  
 
4.1.3  Modeling of Building 
 
The building that was chosen for this study is a typical mid-America un-reinforced 
masonry commercial/residential building of 1930 vintage (Figure 4.1.3).  It is assumed 
that the building is located in Memphis, TN. The building has two-stories, with footprint 
dimensions 83 ft (NS) by 26.9 ft (EW). Its total height is 39 ft. The thickness of all 
masonry walls is assumed to be 12 in. The elastic modulus and the Poisson’s ratio for the 
walls are 515 ksi and 0.25, respectively. The mass of the building was calculated by 
summing the weight of the floor, the roof slabs, the walls and 20 % of the live load. The 
mass was lumped at the center of each diaphragm, and at the intersection of the central 
axes of walls and diaphragms.  The diaphragms of the residential building and its walls 
are assumed to be rigidly connected.  The finite element model of the building is shown 
in Figure 4.1.4. Table 4.1.1 below shows a typical setup for calculation of the lateral 
strength of the building’s south wall (second floor, as shown in Figure 4.1.3). The 
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rocking mode is the dominant type of damage since it occurs at the lowest lateral force.   
Based on the lateral strength value and the corresponding lateral stiffness, which is 
determined by the 2-D finite 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1.2.  Hysteretic Behavior of Each Damage Mode. 

Bed-Joint Rocking Diagonal Tension Cracking 

Figure 4.1.3.  South Wall – Second Floor of a Commercial/Residential Building 
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Figure 4.1.4. Finite element model for un-reinforced masonry 
commercial/residential building, all walls are modeled by the ABAQUS user-

defined-element. 
 
 
 
 
 
 
 
 
 
 
 
 
element analysis (SAP2000), the finite element model of URM wall based on ABAQUS 
is developed following the model generated by White and Kim (2001). The validity of 
this model has been verified by comparison of structural response using this model with 
the recorded response of a fire station during the Loma-Prieta earthquake. 

4.1.4  Structural Response Analysis 
 
Structural response time histories were calculated for each of the ten uniform-hazard 
ground motions. Figure 4.1.5 shows an example of the time history of the response and 
the force-displacement (bed-joint sliding mode) relationship of the south wall of the 
residential building under a 2% in 50 years ground motion. Figure 4.1.6 shows the 
responses (rocking mode) of the north wall of the building under the same ground 

South Wall_2nd (Unit: Kips)       
Pier No. Bed-joint sliding Rocking Diagonal tension Toe compressive

1 34.29 13.46 25.77 14.62 
2 38.34 30.79 58.93 33.45 

Total 72.63 44.26 84.71 48.07 

Table 4.1.1 Lateral Strength Calculation of South Wall of residential building  
 

South Wall 

East Wall 

West Wall 

North Wall 

Rigid Floor 
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motion.  The different energy dissipation characteristics of the two failure modes are 
obvious. The response analyses were carried out for each of the uniform hazard ground 
motions for both 10% and 2 % in 50 years hazards.  The drift ratio (in %) statistics of 
these two walls are shown in Table 4.1.2. The median response represents the demand on 
the structures corresponding to a given probability of exceedance. The east and west 
walls have much smaller response and are not shown here. The south wall has an opening 
in the first floor for the gate of the building. It has a much smaller stiffness and the 
response is large and mostly elastic. The force demand at the wall/diaphragm interface is 
very high, especially for the 2% in 50 years ground motion. For example, the force 
demand at the top of the north wall of the building is 87,000 lb under the 2% in 50 years 
ground motions.  It indicates that the connection components at the interface would not 
be strong enough to withstand such large force.  The implication is that when the 
connection fails the collapse of the structure is quite likely to occur. 
 
4.1.5 Uncertainty Treatment 
 
In vulnerability analysis of structures, i.e., the fragility curve (FC) and limit state (LS) 
probability calculation, both the randomness (aleatory) and uncertainty (epistemic) of the 
ground motion intensity demand, displacement demand, and structural capacity need to 
be considered, as shown in Section 2.  The procedure is demonstrated in the following.  
  
The displacement demand on the structures is described in terms of the drift response 
statistics under the uniform hazard ground motions (Section 2.1.4).  In a UHGM motion-
based approach, these uncertainties are incorporated in the limit state probability analysis 
by a correction factor applied to the median response (Wen and Foutch 1997) as shown in 
Section 2.3.4.2.   The correction factor is given by Eq. 2.3.11.  The total uncertainty is 
given by Eq. 2.3.10, in which both aleatory and epistemic uncertainties of the demand 
and capacity are considered.   The sensitivity factor as shown in Eq. 2.3.12 depends on 
the seismic hazard parameters at the site. Different values of the coefficient of variation 
of the structural capacity were assumed to examine the sensitivity of the limit state 
probability to the capacity uncertainty. To determine the capacity against collapse, the 
Incremental Dynamic Analysis (IDA) was performed to determine the drift ratio capacity 
against incipient collapse and its uncertainty. The fragility analysis of the conditional 
probability of limit state given the excitation intensity of spectral acceleration was then 
performed in which a power law relationship between the displacement demand and the 
excitation intensity was determined from regression analysis of the building responses 
under the UHGM.   
 
 
4.1.6 Displacement limit state probability using UHGM  
 
The displacement limit states in terms of drift ratio of the walls of the building are 
considered. The median responses at the two hazard levels (10% and 2% in 50 years), 
such as those shown in Table 4.1.2, are multiplied by the correction factor in which the 
uncertainty due to record-to-record variation of the response and the structural capacity 
uncertainty against a given limit state (assumed to have a coefficient of variation of 50%) 



 38

are considered.  The probabilistic displacement performance curves are obtained for each 
structural element of the building.  Figure 4.1.7 shows the performance curve of first-
floor north wall of the building.  The sample responses ( ) to the uniform hazard 
motions and the median point (Ο) are shown.  The performance curves with and without 
consideration of the system capacity uncertainty are shown by solid and dashed lines. It is 
seen that in spite of the large uncertainty assumed for the capacity 
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first floor north wall under a 2% in 50 years ground motion. 
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the results are not too sensitive to it due to the dominance of the uncertainty in the 
seismic hazard in Mid-America as mentioned in Section 2.3.4.2. The performance curve 
of the first floor south wall of the building is shown in Figure 4.1.8.   The limit state 
probability in terms of maximum story drift ratio can be therefore determined from the 
performance curve. For example, according to FEMA 273, the drift ratio limits for un-
reinforced masonry construction for Immediate Occupancy (IO), Life Safety (LS), and 
Collapse Prevention (CP) are 0.3%, 0.6 %, and 1%, respectively.   
   
4.1.7 Capacity against Collapse by Incremental Dynamic Analysis (IDA) 

 

Collapse prevention is one of the most important objectives in vulnerability analysis and 
seismic design. The limit state of incipient collapse can be described by an Incremental 
Dynamic Analysis (IDA) as shown in Section 2.2.6.2. Following Vamvatsikos and 
Cornell (2001), a single-record IDA is a series of dynamic nonlinear analysis of the 
building under excitations of a single ground motion scaled to various intensities 
according to the spectral acceleration. The result of an IDA is highly dependent on the 
record chosen; therefore, to capture the full characteristic of uncertainty, IDA of the 
building under multiple ground motions is necessary.  The IDA is therefore performed 
under the UHGM to evaluate the system capacity and uncertainty for the vulnerability 
analysis. Figure 4.1.9 show ten IDA curves of the masonry  

10/50 2/50 
 

Median COV Median COV 

Drift Ratio 0.09 0.21 0.61 0.15 South Wall – First Floor 
Sa 0.11g 0.15 0.78g 0.1 

Drift Ratio 0.1 0.2 0.62 0.17 North Wall – First Floor 
Sa 0.11g 0.15 0.78g 0.1 

Table 4.1.2. Medians and coefficient of variation (COV) of spectral acceleration Sa 
and wall drift ratio (%) of the URM Building, Memphis. 
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Figure 4.1.7. Probabilistic displacement performance curve of first-floor north 
wall, of the building (response □, median ○, solid line includes capacity 
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Figure 4.1.8. Probabilistic displacement performance curve of first-floor south 
wall of the  building (response □, median ○, solid line includes capacity 
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 Figure 4.1.10. IDA curves of the building under 10/ 50 ground motions 

 
 
building under the 2/50 ground motions in Memphis.  Figure 4.1.10 show the IDA curves 
under the 10/50 years ground motions. When the slope of the IDA curve becomes flat, it 
indicates a large increase in structure displacement at a small intensity (spectral 
acceleration) increment, i.e. instability or incipient collapse.   The drift ratio threshold for 
the slope to drop to 20% of the elastic stage has been suggested by Vamvatsikos and 
Cornell for incipient collapse of steel moment frames.  This value is used for the IDA 
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Figure 4.1.9. IDA curves of the building (maximum drift ratio for all walls) under 2/50 
ground motions. 
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curve under 2% in 50 years (2/50) motions.  A threshold corresponding to a 50% drop is 
also used under both 2/50 and 10/50 motions. The resulting incipient collapse drift ratio 
thresholds generally show large scatter.  Figures 4.1.11 and 4.1.12 show the drift capacity 
data points and fits by a lognormal distribution. A straight line would indicate a perfect 
fit. The fits are good in view of the small number of data. The lognormal distribution with 
parameters ( ICCICC,βλ ) is used here in the ensuing reliability analysis where ICC 
denote incipient collapse capacity. The standard deviations of the capacity of two cases 
are 0.33 and 0.29, respectively.  The cumulative lognormal functions of the collapse drift 
capacity for the two cases are shown in Fig 4.1.13.  These are also the fragility curves 
against incipient collapse.  The FEMA 1% deterministic collapse criterion is also shown 
as step function in these two figures for comparison. 
 
4.1.8 Fragility Curve Using Excitation Intensity 
 
As shown in Section 1.1, the fragility curve (FC) is the conditional probability of a 
prescribe limit state given the displacement or seismic excitation intensity demand.  The 
limit state capacity controls the central location of the FC and the uncertainty in the 
capacity controls the shape (or dispersion) of the FC.  The previous section shows the 
calculation of FC given the displacement demand. The FC for given intensity demand is 
also commonly used and is demonstrated as follows. 
 
When the limit state is described in terms of drift ratio, one needs the relationship 
between the drift ratio and spectral acceleration to construct the FC.  A convenient 
relationship is the power law as given in Section 2.1.3. 
 
                   b

aaSD =                                           (4.1.1) 
 
in which, D is drift ratio, Sa is spectral acceleration, a and b are constants determined 
from regression analysis of D on Sa. The regression analysis is carried out using the 
response to the UHGM.  Fig. 4.1.14 and Table 4.1.3 show the results of the analysis.  The 
regression line predicts the mean value of D given Sa.  The scatter around the predicted 
value (or uncertainty of the prediction) due to record-to-record variation is assumed to 
have a uniform coefficient of variation (does not depend Sa).  The distribution of the 
scatter of drift for a given spectral acceleration is again assumed to be lognormal. The 
two clusters show the data points under 10/50 and 2/50 ground motions.  It is seen that 
the relation is almost linear and the scatter are not very large in either case.  In addition to 
the above uncertainty due to earthquake record-to record variation, the there are also 
inherent uncertainty in the system capacity such as those due to material strength 
variability and workmanship. With the lognormal model one can calculate the conditional 
probability (or fragility curve) of a given limit state in terms of drift ratio threshold being 
exceeded given the spectral acceleration as follows. 
 

 )
dln

(1)SdD(P
T
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0

a
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Φ−=≥                                       (4.1.2) 
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Figure 4.1.12.  IDA incipient collapse capacity and lognormal fit, using 2/50 and 
10/50 excitations. 
                                  

Figure 4.1.11.  IDA incipient collapse capacity and lognormal fit, using 2/50 
excitations only. 
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in which 

aSDλ and Tβ are lognormal distribution parameters calculated from the mean 

value from the regression equation and the overall uncertainty 
5.02

C
2

SDT )(
a

δ+δ=δ where 
aSDδ denotes uncertainty due to record-to-record 

variation as seen in the regression curves in Figures 4.1.14 and Cδ denotes inherent 
capacity uncertainty. The FC for incipient collapse according to the IDA procedure as a 
function of the drift can be converted to that in terms of the spectral acceleration as 
follows. For a given value of Sa, the drift demand as shown in the scatter of Figures 
4.1.14 can be assumed to follow a lognormal distribution.  Since the capacity against IC 
is also lognormal, the probability of IC given Sa, or the fragility curve for IC can be given 
by 
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in which ICCλ and ICCβ are the lognormal distribution parameters for structural capacity 
against incipient collapse (IC) evaluated from IDA analysis (see Fig. 4.1.12), Cβ  denotes 
the modeling uncertainty in the IC capacity evaluation by IDA method. The conditional 
probability (FC) of the three limit states, IO, LS, and CP according to FEMA 273 are 
calculated and shown in Fig. 4.1.15.  The effect of Cδ  is seen by comparing the top, 

Figure 4.1.13.  Building IDA incipient collapse fragility curve: dashed line, using 
both 10/50 and 2/50 excitation; solid line, using 2/50 excitations only. FEMA 1% 
deterministic capacity would be a step function at 1%. 
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middle and bottom figure with Cδ = 20%, 30% and 40% respectively.  FC for incipient 
collapse is also calculated and shown in the figure for comparison.  Note that only 
uncertainty due to ground motion record-to-record variation is considered in the FC 
shown in this figure.  Other uncertainties in structural capacity such as those in material 
properties, due to design errors and poor workmanship etc. have not been considered.  
They can be significantly larger and will cause a much larger dispersion in the FC.   
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Figure 4.1.14.  Regression analysis of wall drift ratio versus spectral acceleration: 
top, first-floor south wall; bottom, first-floor north wall.  
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Table 4.1.3.  Regression coefficients 

 
 
 
 
 
 
 
 
 
 
4.1.9  Limit State Probability 
 
Following Section 1.2, the 50-year probabilities are calculated for the above four limit 
states by integration of the FC with respect to the density function of the spectral 
acceleration as follows   
 
 P(LS) = ∫ da)a(f)SLS(P aSa                                                   (4.1.4) 

 
in which fSa is the probability density function (assumed to be lognormal in this study) of 
the 50-year maximum spectral acceleration function based on the UHGM for Memphis. 
 
To examine the sensitivity of the result to capacity uncertainty assumptions used in 
conjunction with the FEMA 273 limit states, different coefficients of variations of the 
capacity are assumed.  The annual probabilities of limit states according to FEMA 273 
classification of IO, LS, and CP are shown in Tables 4.1.4 and 4.1.5.  A standard 
deviation of 0.3% drift ratio was assumed in Table 4.1.4 for the FEMA limit state 
thresholds.  The uncertainties were increased by a factor of two in Table 4.1.5.  A 
lognormal distribution was assumed again for the capacity uncertainties.  For 
comparison, the Incipient Collapse (IC) limit state probability according to IDA analysis 
is also shown and no additional uncertainty is considered ( Cβ = 0).  It is seen that the 
results are not too sensitive to the capacity uncertainty assumption due to the dominance 
of the uncertainty in seismic excitation in Memphis.  Comparison of Table 4.1.5 with the 
50-year probability of Fig. 4.1.7 at drift ratios of 0.1 for IO, 0.3 for LS and 1.0 for CP 
shows that the two different approaches give results that are very close. 
 

Wall Location a b Coefficient of 
variation 

South Wall (First Floor) 0.747 1.02 0.107 

North Wall (First Floor) 0.752 0.97 0.123 
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Figure  4.1.15. Fragility curve of the building for different limit states: solid line, IO 
(Immediate Occupancy); dashed line, LS (Life Safety); broken line, CP( Collapse 
Prevention) according to FEMA 273, and broken-dashed line, IC (Incipient 
Collapse) according to IDA; system capacity uncertainty Cδ assumed to be 0.2, 0.3 
and 0.4 in top, middle and bottom figure. 
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Table  4.1.4.  50-year limit state probability 
 
 

Limit State 
Immediate 
Occupancy 
(IO) 

Life Safety 
(LS) 

Collapse 
Prevention 
(CP) 

Incipient 
Collapse 
(IC) 

Reference FEMA 273 FEMA 273 FEMA273 IDA analysis 

Capacity (Median Drift Ratio, %) 0.3 0.6 1 1.74 
Standard Deviation of Capacity 0.3 0.3 0.3 0.33 

Limit State Probability 3.75X10-2 2.11X10-2 1.35X10-2 8.36X10-3 
 
 

Table 4.1.5.  50-year limit state probability 
 

Limit State 
Immediate 
Occupancy 
(IO) 

Life Safety 
(LS) 

Collapse 
Prevention 
(CP) 

Incipient 
Collapse 
(IC) 

Reference FEMA 273 FEMA 273 FEMA273 IDA analysis 
Capacity (Median Drift Ratio, %) 0.3 0.6 1 1.74 
Standard Deviation of Capacity 0.6 0.6 0.6 0.33 

Limit State Probability 4.06X10-2 2.30X10-2 1.49X10-2 8.36X10-3 
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4.2 Reinforced Concrete Frame Structures  
 
4.2.1 Research Objectives 
The objective of this work was to quantify the vulnerability of older reinforced concrete 
(RC) frame structures located in the Mid-America region, specifically near Memphis, 
TN, due to potential earthquakes.  The seismic vulnerability of such construction is 
described by means of fragility curves, which relate the probability of exceeding a 
particular limit state given an imposed seismic demand.  In this work, seismic demand is 
defined as the spectral acceleration of a particular earthquake event at the fundamental 
period of the structure under consideration.  Story limit state capacities are identified 
using FEMA guidelines (immediate occupancy, life safety and collapse prevention) and 
using quantitative nonlinear analysis methods (first yield, plastic mechanism initiation, 
and incipient collapse).  In addition, this research attempts to quantify the improved 
vulnerability of retrofitted RC structures using column strengthening. 
 
4.2.2 Introduction 
 
Historical Review of Model Building Code Requirements 
The earliest model building code provisions for seismic design are in the 1927 Uniform 
Building Code (Olshansky, 1993).  However, earthquake resistant design provisions were 
not fully considered nor implemented until after the 1971 San Fernando earthquake 
(Nordenson, 1993).  Since that time, seismic provisions have been included, modified, 
and implemented continuously in our current building codes.  For example, the 1988 
version of the Standard Building Code provided seismic design provisions (Olshansky, 
1993).  However, state, county, or local entities rarely adopted these provisions.  This 
resulted in building designs where the lateral load demand forces were small in 
comparison to the gravity load demands (Nordenson, 1993).  
 
Review of ACI 318 Building Code Requirements 
In the United States as well as throughout the work, the American Concrete Institute 
(ACI) 318 building code provisions and commentary are predominantly followed for the 
design of reinforced concrete buildings.  The historical development of the ACI 318 with 
respect to seismic design provisions was presented in Dooley and Bracci (2001).  A 
partial summary of that work is provided below. 
 
Seismic provisions were first established in an appendix of ACI-318 following the San 
Fernando earthquake event in 1971.  For special ductile frames, the sum of the column 
moment strengths was required to be greater than the beam moment strengths at any 
beam-column joint intersection (ACI 318-71, 1971) to promote desirable beam hinging.  
In addition, there were transverse reinforcement requirements in beam and column 
sections near the joint regions, beyond the standard non-seismic detailing, to enhance the 
ductility of the frame members.  In the ACI 318-83 (1983) provisions, the design flexural 
strengths (φMn) of the columns were required to exceed the design flexural strengths of 
the beams at the beam-column joint centers by at least 20%.  The intent of the additional 
column strength requirement was to reduce the likelihood of yielding in the columns of 
frame structures.  However, the beam strengths in monolithic construction could be 
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interpreted as the nominal flexural strength of the rectangular beam sections, neglecting 
contributions from the slab and slab reinforcement, which can significantly impact beam 
strength.  More elaborate transverse reinforcement was also required, especially near 
beam-column joint regions, since columns might still develop significant yielding during 
earthquakes.  ACI committee 352 (1991) on joints made recommendations for the 
seismic design of frame structures that the sum of the nominal flexural strengths (Mn) of 
the columns above and below the joint exceed the sum of the nominal flexural strengths 
of the beams framing in to the joint in a particular horizontal direction by at least 40%.  
In this report, it was clearly emphasized that no strength reduction factors were to be 
utilized and that the beam strength was to be determined with contributions from the slab 
in compression for positive moment and slab reinforcement for negative moment within 
the effective flange width as defined in ACI 318.  
 
ACI 318-99 (2003) currently requires that the nominal flexural strength of columns 
exceed the nominal flexural strength of beams at beam-column joint faces by at least 
20%.  In this provision, the beam nominal flexural strength should consider the 
contributions of the slab in compression for positive moment (T-beam) and slab 
reinforcement for negative moment within the effective flange width defined in ACI 318.  
In other countries, such as New Zealand and Mexico, higher minimum nominal column-
to-beam strength ratios at joint regions (between 1.5 and 2.0) are required.  And even 
though the columns are much stronger than the beams at the frame joints, significant 
transverse detailing in potential hinge regions, including the columns and beam-column 
joints, is still required. 
 
Older Reinforced Concrete Frame Structures 
Low-rise RC frame buildings located in regions historically considered of low to 
moderate seismic risk were typically designed without consideration of lateral loading, 
since wind load seldom governed for low-rise construction.  Therefore, such structures 
have been categorized as gravity load designed, or GLD, structures (Bracci et al., 1995a).  
In general, GLD RC frame structures have no special reinforcing details in the beam, 
column, and joint regions (El-Attar, 1997, Pessiki, 1990, Aycardi, 1994, and Bracci, 
1995a).  Another characteristic that distinguishes these structures from others designed in 
areas of higher seismic risk is the existence of strong beams and weak columns, which 
can lead to soft story failure mechanisms that are composed primarily of column hinging.  
The lack of sufficient column strength leads to column hinging at relatively low lateral 
loads, causing the formation of a story mechanism once all columns located on one story 
have hinged.  Once the mechanism develops, the building's resistance is provided solely 
by the post-yield strength of the hinging column ends and inherent section ductility.  
Combining the lack of sufficient column strength with the lack of sufficient detailing in 
column sections for ductility, brittle soft story failure mechanisms may be prominent 
during strong earthquakes. 
 
4.2.3 Prototype Building Design 
 
The first task in the research was to design a three-story RC frame structure located in an 
area historically considered to be of low-to-moderate seismicity.  As previously 
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discussed, buildings located in such areas were designed for gravity loads only.  
Therefore, the controlling design equation was U = 1.4D + 1.7L (ACI 318, 1999), where 
U is the total factored demand; D is the effect of dead load, including self weight, 20 psf 
for superimposed dead weight, and 500 lb/ft of cladding around the building perimeter; 
and L is the effect of live load, which was taken 50 psf for a typical office building 
loading. 

 
The overall geometry of the building and member sections are shown in Fig. 4.2.1.  The 
building system is a two-way slab, space frame building for resisting gravity and lateral 
loading.  Column spacing (26 ft.) was determined and maximized based on using an 8” 
thick RC two-way slab designed according to the direct design method specified in ACI 
318-99.  Based on demand gravity loading, the minimum required slab reinforcement, #4 
at 12” cc, governed the design for both the column and middle strip regions.  Beams were 
designed as T-beam sections, with effective slab flange widths of 78” and 42” for the 
interior and exterior beams, respectively.  The final beam sections at the beam-column 
joint face based on factored gravity loading were 16” wide and 24” deep from the top of 
slab to the bottom of the beam with 4#7 and 2#7 for top and bottom bars, respectively.  
Columns were 16” by 16” with 4#8 bars (1.2% reinforcement).  Based on an average 
level of axial loading among columns and consideration of the slab and slab 
reinforcement within the effective flange width for the beams, the approximate column-
to-beam strength ratio for the prototype building at an interior joint was 0.60, which is 
well below the current ACI 318 seismic requirements of 1.2.  For a typical story, the ratio 
of total column strength to beam strength was about 0.8.  From an eigenvalue analysis of 
the building numerical model, the fundamental period of the building was 0.87 seconds 
taking into account cracked sections per ACI 318. 
 
4.2.4 Fragility Curve Development 
 
The fragility curves for the RC frame building were developed according to the following 
equation: 

( ) /
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/

/ 1 a
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λ λ

φ
β β β

⎛ ⎞−⎜ ⎟= −
⎜ ⎟+ +⎝ ⎠

     (4.2.1) 

where: P(LS/Sa) = Probability of exceeding a limit state given the spectral 
acceleration at the fundamental period of the building; φ = standard normal 
distribution; λc = ln(median drift capacity for a particular limit state); λD/Sa = 
ln(calculated median demand drift given the spectral acceleration from the best fit 
power law line); βD/Sa = demand uncertainty = sqrt(ln(1+s2)), where s2 = standard 
error = Σ[(ln(Yi)–ln(Yp)]2/(n-2); Yi, Yp are the observed and power law predicted 
median demand drifts, respectively, given the spectral acceleration, and n is the 
number of sample data demand points; βc is the capacity uncertainty, which is 
taken as sqrt(ln(1+cov^2)) for the IDA and taken as 0.3 for FEMA and pushover 
limit states; and βm is the modeling uncertainty, which is taken as 0.2, 0.3 and 0.4 
for comparison. 
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Below the demand and capacity variables in Eq. 4.2.1 are defined and described below. 
 
4.2.4.1 Inter-Story Drift Capacities (Limit States) 
 
Based on observations during past earthquakes and previous research, the imposed inter-
story drift on structures has been well correlated with the level of structural damage.  As 
a result, this study will emphasize inter-story drift as the key parameter in the 
development of vulnerability functions.  In this section, three different methods for 
developing inter-story drift capacities or limit states are presented in conjunction with 
different levels of uncertainty.  The first set of limit state capacities was based on 
suggested story drift limitations using qualitative descriptions for Immediate Occupancy, 
Life Safety, and Collapse Prevention in FEMA-273 (1997).  The second set of limit state 
capacities was determined quantitatively, specifically first yield and plastic mechanism 
initiation of the stories, from the results of nonlinear pushover analyses.  Finally, 
incremental dynamic analyses were used to obtain the incipient collapse limit state. 

 
FEMA-273 Limit States 
Qualitative structural limit states described in FEMA-273 are:  Immediate Occupancy 
(IO), where the structure would have minimal damage and occupants would have access 
to the structure following the earthquake event; Life Safety (LS), where the structure 
would have significant damage, but the life safety of the occupants would be preserved; 
and Collapse Prevention (CP), where the structure would be on the verge of structural 
collapse.  For RC frame structures, these qualitative limit states can be represented by 
deterministic inter-story drift limits of 1%, 2%, and 4% of the story height for IO, LS, 
and CP, respectively.  Although these suggested limits are approximate, they are 
considered fairly accurate for buildings properly designed for seismic loading.  For GLD 
buildings, the limits for life safety and collapse prevention are probably not conservative 
due to insufficient column strength and insufficient section detailing for ductility as 
described previously.  In this work, the uncertainty parameter (which is similar to the 
coefficient of variation) related to these limit state capacities, βc, was taken as 0.3 for all 
fragility curve development and λc was taken as ln(1.0), ln(2.0), and ln(4.0) for IO, LS, 
and CP, respectively.  
 
Quantitative Pushover Analyses 
Pushover analyses are commonly used in seismic design and evaluation of structures as 
indicators of structural yielding and potential failure mechanisms.  These types of 
analyses subject a nonlinear numerical model of a structure to prescribed forces or 
displacements until failure or some limit is reached.  Results of pushover analyses 
demonstrate a building's resistance in terms of story shear force versus inter-story drift.  
In this work, force control loading analyses consisted of applying incremental inverted 
triangular and uniform loadings.  In addition, displacement control analyses were used by 
prescribing incremental story displacements onto the structure.  In order to identify 
critical story mechanisms, these analyses consisted of incrementally displacing an 
individual story and restricting the displacement of the story below.  Individual story 
resistances are important because the lateral resistance of an entire structure is often 
dependent on the performance of a single story of the structure, especially for GLD  
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(a) Plan View 
 

 
 
 
 
 
 
 

(b)  Section A-A 
 
 
 
 
 
 

 
 
 
 
 

(c) Beam with Monolithic Slab Section      (d) Column Section 
 

Figure 4.2.1 Prototype Structure 
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buildings.  Finally, the upper-most story was displaced without restriction in lower stories 
to identify potential beam-sidesway mechanisms. 
 
The results from the pushover analyses are presented in terms of story shear force vs. 
inter-story drift as shown in Fig. 4.2.2 and the sequence of member yielding as shown in 
Fig. 4.2.3.  The first yield and plastic mechanism initiation drift limits (described 
previously) for the particular story of interest are shown in Fig. 4.2.2 and the final hinge 
section at which the mechanism develops is noted in parenthesis and corresponds with 
the sequence in Fig. 4.2.3.   Similarly, the displacement control results are shown in Figs. 
4.2.4 and 4.2.5.  It should be emphasized that the results shown are based only on first 
order analyses and that P-delta loading is neglected.  A significant observation from these 
results is that most yielding members were the columns, which was expected because of 
the small column-to-beam strength ratio, 0.6, in GLD structures.  Second, the uniform 
force control analysis induced more critical first story limit states than the inverted 
triangular loading, and yielding was mainly restricted to the first story as shown in Fig. 
4.2.3.  The results from the displacement control loading further emphasize the potential 
for development of a story mechanism and more critical limit state values.  The limit state 
capacities identified by nonlinear pushover methods are summarized in Table 4.2.1.  
Comparing the first yield and plastic mechanism limits from nonlinear pushover analyses 
with the immediate occupancy and life safety limit from FEMA, respectively, it can be 
concluded that the pushover limit states are significantly less than similar qualitative 
FEMA limits, for example comparing immediate occupancy with first yield and life 
safety with plastic mechanism initiation.  However, the FEMA limits are intended for 
seismically designed structures. 
 
Table 4.2.1 Pushover Drift Limits for First Yield and Plastic Mechanism Initiation 

 
Pushover Loading Story FY Limit (% drift) PMI Limit  (% drift)
 
Force-Triangle 

1 
2 
3 

0.35 
 

0.99 
1.22 

 
Force-Uniform 

1 
2 
3 

0.34 0.70 
1.40 

 
Displacement 1 

1 
2 
3 

0.32 0.52 

 
Displacement 2-1 

1 
2 
3 

 
0.29 

 
0.61 

 
Displacement 3-2 

1 
2 
3 

 
 

0.26 

 
 

0.74 
 
Displacement 3 

1 
2 
3 

0.31 0.83 
0.51 
1.05 
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(a) Inverted Triangular Distribution  

 
(b) Uniform Distribution 

 
Figure 4.2.2 Pushover Analyses - Force Control Loading 
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(a) Force Control - Inverted Triangular 
 

 
 
 
 
 
 
 
 

(b) Force Control - Uniform Distribution 
 

Figure 4.2.3 Sequence of PMI – Force Control Loading 
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(a) 3rd Story – No restrictions 

 
Figure 4.2.4 Pushover Analyses - Displacement Control Loading 
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(b) 3rd Story – Restrict 2nd Story 
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(c) 2nd Story – Restrict 1st Story 

 
Figure 4.2.4 Continued  
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Figure 4.2.4 Continued 
 
 
 

 
 
 
 
 
 
 
 

(a) 3rd Story – No Restrictions 
 
 
 
 
 
 
 
 
 

(b) 3rd Story – Restrict 2nd Story 
 

Figure 4.2.5 Sequence of PMI – Displacement Control 
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(c) 2nd Story – Restrict 1st Story 

 
 
 
 
 
 
 
 
 

(d) 1st Story 
 

Figure 4.2.5 Continued 
 

For limit states determined from nonlinear pushover analyses, the uncertainty parameter 
related to these limit state capacities, βC, was taken as 0.3 for all fragility curve 
development.  Since the displacement control loading produced the most critical drift 
limits for first yield and plastic mechanism initiation, λC was taken as ln(0.32) and 
ln(0.52) for FY and PMI, respectively.  
 
Incremental Dynamic Analyses 
Incremental dynamic analysis (IDA) was next used to identify the Incipient Collapse 
limit state.  IDA is basically an analytical procedure were the spectral acceleration of a 
ground motion at the fundamental period of the structure is incrementally increased and 
maximum inter-story drift demand is calculated by means of nonlinear time history 
dynamic analysis at each increment.  In this work, Incipient Collapse was defined when 
the slope of the story drift vs. spectral acceleration decreases by 50% of the initial slope.  
Since 2 suites of 10 ground motions are utilized to represent the seismic demand 
(described later), IDA was conducted for the entire 20 records and a statistical estimate of 
incipient collapse was identified in terms of a story drift limit.  Sample response curves 
from the IDA up to 5% inter-story drift demand are shown in Fig. 4.2.6a.  The incipient 
collapse drift limit, as defined above, was identified for 14 of the 20 records, and is 
shown to fit a lognormal distribution in Fig. 4.2.6b.    For the fragility curve parameters, 
the uncertainty parameter (which is similar to the coefficient of variation) related to these 
limit state capacities, βC, was calculated by sqrt(ln(1+cov^2)) = 0.46, where cov is the 
coefficient of variation of the calculated IC limit state capacities.  λC was taken as 
ln(median drift = 2.38%).  
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Figure 4.2.6 Incremental Dynamic Analyses 
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Summary 
Table 4.2.2 shows the βC and λC capacity factors needed for the creation of fragility 
curves.   

 
Table 4.2.2 Capacity Factors 

 
 FEMA-IO FEMA-LS FEMA-CP IDA-IC Pushover-FY Pushover-PMI 
βC 0.3 0.3 0.3 0.46 0.3 0.3 
λC 0.00 0.69 1.39 0.87 -1.14 -0.65 
 
 
4.2.4.2 Seismic Demand 
 
Inelastic time history dynamic analyses using the program IDASS (Kunnath, 2003) are 
used to find the seismic demand of the given RC frame structure during earthquake 
ground motions of variable intensity.  Since recorded ground motions for the Mid-
America region are not available, synthetic ground motions developed by Wu and Wen 
(2001) were used as the seismic excitations.  The ground motions, developed for the 
Memphis region with representative soil conditions, consist of a suite of 10 records with 
10% and 2% probability of exceedence in 50 years.  Figs. 4.2.7 and 4.2.8 shows the 
elastic acceleration and displacement response spectra, respectively, for the records used 
throughout inelastic time history dynamic analyses.   
 
Nonlinear time history dynamic analyses were used to find the expected seismic inter-
story drift demands for the 2 suites of ground motions.  Fig. 4.2.9 shows the peak story 
drift demand vs. spectral acceleration at the fundamental building period for every 
ground motion and the best-fit power law trend line.  The figure shows significant scatter 
in the demands with the 2% ground motion records, but still an overall good fit is 
obtained. 
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Figure 4.2.7  Acceleration Response Spectra 
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Figure 4.2.8  Displacement Response Spectra 
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FIGURE 4.2.9 Inter-Story Drift Demand vs. Spectral Acceleration at 0.87 

Sec. Period 
 

Based on the results of these analyses, the fragility curve parameters related to the 
seismic demand are calculated as follows:  λD/Sa = ln(calculated median demand drift for 
a given spectral acceleration of an earthquake at the fundamental period of the structure); 

and βD/Sa = sqrt(ln(1+s2)), as described previously.  In this work, the demand drifts are 
calculated from the best-fit power law line and the scatter of the demand drifts about the 
same best-fit line are accounted for in the uncertainty parameter βD/Sa which was equal to 
0.23. 
 
4.2.4.3 Fragility Curve Results 
 
Figs. 4.2.10-4.2.12 show the fragility curves for a typical older RC frame building, with 
three different levels of modeling uncertainty, βm = 0.2, 0.3, and 0.4.  The top portion of 
the figures show the fragility curves for the FEMA drift limit states and the lower portion 
shows the fragility curves for incipient collapse, first yield, and plastic mechanism 
initiation.  Comparing the results between the 20%, 30%, and 40% modeling uncertainty, 
it can be concluded that the level of modeling uncertainty is relatively insignificant.  For 
this reason, all further results discussed will deal only with a 30% modeling uncertainty.  
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Figure 4.2.10 Fragility Curves with βm = 0.2 
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Figure 4.2.11 Fragility Curves with βm = 0.3 
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Figure 4.2.12 Fragility Curves with βm = 0.4 
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Given the fragility curves, the seismic vulnerability of older RC frame structures can be 
evaluated based on given seismic event scenarios.  For example, the IBC (2003) model 
building code specifies that new construction of similar buildings near Memphis, TN 
should be designed for a spectral acceleration of 0.74 g with fundamental building period 
of 0.87 sec. (using Ss =3.0 g and S1 = 1.0 g).  This acceleration would be representative of 
a very large intensity earthquake with 2% probability of exceedance in 50 years.  Given 
the spectral acceleration of 0.74 g and the fragility curves developed, it can be concluded 
that older RC frame buildings will be extremely vulnerable to severe damage. For 
example, the probabilities of exceeding the FEMA defined limits are 99% for immediate 
occupancy, 99% for life safety, and 88% for collapse prevention.  Using the nonlinear 
pushover and incremental dynamic analyses, the probability of exceeding the first yield 
and plastic mechanism initiation limit states are 99%, and 96% for incipient collapse.  
 
4.2.5 Retrofit Fragility Curves for older RC Frame Structures 
 
As summarized previously, GLD RC frame structures inherently have strong beams and 
weak columns (column-to-beam strength ratio of 0.6 for the prototype structure), which 
make them prone to story mechanisms at same inter-story drift levels.  The fragility 
curves presented in Section 4.4.4 are basically controlled by response at the first story.  
Previous work by Bracci et al. (1995b) and Dooley and Bracci (2001) have shown that a 
key variable in controlling seismic damage to RC frames structures is the column-to-
beam strength ratio at beam column joints.  Therefore, a parametric study was conducted 
to evaluate the seismic performance of RC frame structures using column-to-beam 
strength ratios of 1.2 and 1.8.  The former ratio is the current seismic design requirement 
specified in ACI 318 (2002) and the latter is a ratio recommended by Dooley and Bracci 
to deter story mechanisms.  To accomplish the objective of evaluating the influence of 
column-to-beam strength ratio, two additional sets of fragility curves are developed 
according to the same methodology previously presented, for column-to-beam strength 
ratios of 1.2 and 1.8.  The manner in which this was accomplished was by altering the 
column moment strength vs. curvature in the nonlinear analysis model to achieve the 
desired strength ratio.  Fig. 4.2.13 shows the input column moment strength vs. curvature 
relationship input into the computer code IDASS for the originally GLD model (0.6), as 
well as relationships for the 1.2 and 1.8 strength ratios.  It is important to note that the 
initial stiffness of the column response is constant in order to evaluate the influence of 
increasing column strength alone on the fragility curves. 
 
4.2.5.1 Inter-Story Drift Capacities (Limit States) 
 
Inter-story drift limit states for the computation models using column-to-beam strength 
ratios of 1.2 and 1.8 are defined below for each method used: 
 
FEMA-273 Limit States 
Since FEMA defines qualitative limit states which can be represented by deterministic 
inter-story drift limits of 1%, 2%, and 4% of the story height for IO, LS, and CP, 
respectively, for RC frame structures, the same drift limits will be considered for the two 
retrofit models.  Therefore, as previously for the GLD building model, the uncertainty  
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Figure 4.2.13  Nonlinear Moment vs. Curvature Relationships for Columns 

 
parameter, βC, was taken as 0.3 for all fragility curves and λC was taken as ln(1.0), 
ln(2.0), and ln(4.0) for IO, LS, and CP, respectively.  
 
Quantitative Pushover Analyses 
Since displacement control loading of individual stories was the critical loading 
mechanism for developing first yield and plastic mechanism initiation limit states, 
displacement control loading of the first story is only presented.  The force-drift response 
and sequence of member yielding for the building models with 1.2 and 1.8 column-to-
beam strength ratios are presented in Figs. 4.2.14 and 4.2.15, respectively.  It can be 
observed that as the strength ratio of the building model increases that more yielding 
occurs in beam sections and the yielding mechanism in the structure is significantly 
distributed throughout the structure.  This results in larger drift limits for plastic 
mechanism initiation.  However, the first yield limit state is similar to the original GLD 
building.  Therefore, the uncertainty parameter, βC, was again taken as 0.3 for both 
building models and λC was taken as ln(0.61) and ln(0.57) for FY and ln(2.40) and 
ln(4.94) for PMI, respectively for the building models with column-to-beam strength 
ratios of 1.2 and 1.8.  
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Figure 4.2.14 Pushover Analyses - Displacement Control Loading – 1.2 Strength 
Ratio 
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Figure 4.2.15 Pushover Analyses - Displacement Control Loading – 1.8 Strength 
Ratio 
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Incremental Dynamic Analyses 
The critical incipient collapse drift limits from the IDA for the two retrofitted models are 
shown in Figs. 4.2.16 and 4.2.17.  βC was determined to be 0.34 and 0.42, and λC was 
taken as ln(median drift = 2.20%) and ln(median drift = 2.65%), respectively for the 1.2 
and 1.8 ratio building models.  
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Figure 4.2.16 Incremental Dynamic Analyses – 1.2 Strength Ratio 
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Figure 4.2.17 Incremental Dynamic Analyses – 1.8 Strength Ratio 
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Summary 
Table 4.2.3 shows the capacity factors for the 1.2 and 1.8 models for the fragility curves.   

 
Table 4.2.3 Capacity Factors for 1.2 and 1.8 Models 

 
 FEMA-IO FEMA-LS FEMA-CP IC Pushover-FY Pushover-PMI 
βC (1.2) 0.3 0.3 0.3 0.34 0.3 0.3 
λC (1.2) 0.00 0.69 1.39 0.79 -0.49 0.88 
βC (1.8) 0.3 0.3 0.3 0.42 0.3 0.3 
λC (1.8) 0.00 0.69 1.39 0.98 -0.56 1.60 
 
 
4.2.5.2 Seismic Demand 
 
Inelastic time history dynamic analyses using IDASS (Kunnath, 2003) were used to find 
the seismic demand for the RC frame structures with 1.2 and 1.8 column-to-beam 
strength ratios during the same earthquake ground motions used for the GLD building.  
Figs. 4.2.18 and 4.2.19 show the peak story drift demand vs. spectral acceleration at the 
fundamental building period for every ground motion and the best-fit power law trend 
line, respectively for the 1.2 and 1.8 ratio building models.  The figures again shows 
significant scatter in the demands with the 2% ground motion records, but still an overall 
good fit is obtained. 
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Figure 4.2.18 Inter-Story Drift Demand vs. Spectral Acceleration – 1.2 Strength 

Ratio 
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Figure 4.2.19 Inter-Story Drift Demand vs. Spectral Acceleration – 1.8 Strength 

Ratio 
 

Based on the results of these analyses, the fragility curve parameters related to the 
seismic demand are calculated as follows:  λD/Sa = ln(calculated median demand drift for 
a given spectral acceleration of an earthquake at the fundamental period of the structure); 

and βD/Sa = sqrt(ln(1+s2)), as described previously.  As before, the demand drifts are 
calculated from the best-fit power law line and the scatter of the demand drifts about the 
same best-fit line are accounted for in the uncertainty parameter βD/Sa which was equal to 
0.35 and 0.37, respectively for the 1.2 and 1.8 building models. 
 
4.2.5.3 Fragility Curve Results 
 
Figs. 4.2.20 and 4.2.21 show the fragility curves for 1.2 and 1.8 column-to-beam strength 
ratio building models.  The top portion of the figures show the fragility curves for the 
FEMA drift limit states and the lower portion shows the fragility curves for incipient 
collapse, first yield, and plastic mechanism initiation.  It can be observed by comparing 
the FEMA drift limit state fragilities that the probability of exceedance is improved with 
building retrofit based on column strengthening.  However, the two retrofitted models 
have similar probability of exceedence.  Since the capacity limit states were constant for 
all three model building, it can be concluded that the inter-story drift demands were 
significantly reduced with column strengthening of 1.2 strength ratio as compared to the 
existing building, and only slightly reduced with additional column strengthening at the 
1.8 strength ratio.  However, column strengthening using the 1.8 column-to-beam 
strength ratio also significantly affects the quantifiable limit state capacities of first yield 
and plastic mechanism initiation.  This results in enhanced building performance and 
better fragility curves. 
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Figure 4.2.20 Fragility Curves – 1.2 Strength Ratio 
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Figure 4.2.21 Fragility Curves – 1.8 Strength Ratio 
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4.2.6 Conclusions 
 
The seismic vulnerability of older reinforced concrete (RC) frame structures located in 
the Mid-America region, specifically near Memphis, TN, due to potential earthquakes 
was quantified by means of fragility curves, which relate the probability of exceeding a 
particular limit state given an imposed seismic demand.  Seismic demand is defined as 
the spectral acceleration of a particular earthquake event at the fundamental period of the 
structure under consideration.  Story limit state capacities were identified using FEMA 
guidelines (immediate occupancy, life safety and collapse prevention) and using 
quantitative nonlinear analysis methods (first yield, plastic mechanism initiation, and 
incipient collapse).  The fragility curve results imply that such construction will be 
vulnerability to severe damage during large magnitude earthquakes that are probable for 
the region.  As a method of retrofit, column strengthening was considered to improve the 
seismic vulnerability of such structures.  The results showed that the fragility curves were 
improved with column strengthening.  Building seismic response demands were 
significantly reduced with column strengthening of 1.2 strength ratio as compared to the 
existing building, and only slightly reduced with additional column strengthening at the 
1.8 strength ratio.  However, column strengthening using the 1.8 column-to-beam 
strength ratio also significantly affects the quantifiable limit state capacities of first yield 
and plastic mechanism initiation.  This results in enhanced building performance and 
better fragility curves.  
 
 
 
4.3 Steel Building Frames 
 
Steel moment frames in buildings play a key role in mitigating the impact of extreme 
earthquakes and winds. Their importance to the performance of the overall building system 
is amplified by the so-called common cause effect, in which inadequate performance of the 
structure may lead to failure or loss of function of nonstructural items such as roofing and 
cladding, as well as damage to mechanical or electrical components and systems. 
 
In this section, fragility-modeling procedures are developed for steel frames, components 
and systems subjected to earthquake ground motions.  These quantitative methods provide 
a basis for evaluating structural performance and the role of the structural system in 
mitigating earthquake hazards and in developing damage and loss estimation procedures.   
The study is centered on the following three tasks: 
 

• Fragility modeling 
• Database requirements 
• Risk perspectives derived from fragility estimates  

  
4.3.1 Review of fragility modeling concepts 
 
As noted in Section 2, fragility analysis is a technique for assessing and displaying, in 
probabilistic terms, the capability of an engineered component or system to withstand a 
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specified seismic event.  Fragility modeling requires a focus on the behavior of the 
structural system as a whole and, specifically, on what can go wrong with the system.  The 
fragility modeling process leads to a median-centered estimate of system performance, 
coupled with an estimate of the uncertainty in performance. This uncertainty has both 
aleatory and epistemic components, as discussed below.  While the control variable in the 
current application is the spectral acceleration at the fundamental period of the structure, 
Sa(T1), other demand variables, such as spectral velocity or Modified Mercalli Intensity, 
can also be used.  The selection of the control variable depends on the manner in which the 
hazard is specified, the nature of the decision process, and the mode of risk communication 
to the stakeholder group. 
 
The fragility of a structure commonly is modeled by a lognormal cumulative distribution 
function (CDF).  If the structural capacity is described as the product of a large number of 
statistically independent random variables, the central limit theorem provides some 
justification for this choice of CDF. Using this model, the fragility is described by, 
 
 
 FR(x)  =  Φ[ln(x/mR)/βR]                                                                                  (4.3.1) 
 
 
in which Φ[ ] = standard normal probability integral, mR = median capacity (expressed in 
units that are dimensionally consistent with the control variable used to define the seismic 
hazard, e.g., spectral acceleration,), and βR = logarithmic standard deviation, which is 
approximately equal to the coefficient of variation (COV) in capacity, VR, when VR ≤ 0.3.  
The 5-percent exclusion limit on the system capacity, which might serve as a threshold for 
decision purposes (as illustrated subsequently), is 
 
 
 R0.05 =  mR exp (-1.645 βR)                                                                                  (4.3.2) 
 
 
Equation (4.3.1) depicts the conditional limit state probability of the system when the state 
of knowledge is essentially perfect (within the bounds of normal engineering structural 
mechanics).  In this case, parameters mR and βR measure inherent randomness (or aleatory 
uncertainty).  Such uncertainties are essentially irreducible under current engineering 
analysis procedures.  As an example, the yield strength of steel sampled from the flange of 
an ASTM A992 W-section (specified yield stress of 50 ksi), tested in accordance with 
standard ASTM procedures, is a random variable that can be modeled by a lognormal 
distribution with a mean of approximately 56 ksi (386 MPa) and COV of approximately 
0.08, depending on the Shape Schedule (AISC, 1999).  These statistical estimates are 
relatively stable from sample to sample, assuming that the sample sizes are not too small.  
This inherent variability is characteristic of aleatory uncertainty; additional data or other 
information does not change the probabilistic model in any significant way. 
 
Additional sources of uncertainty in estimated capacity arise from assumptions made in 
the analysis of the system and from limitations in the supporting databases. In contrast to 
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aleatory uncertainties, these knowledge-based (or epistemic) uncertainties depend on the 
quality of the analysis and supporting databases, and generally can be reduced, at the 
expense of more comprehensive (and costly) analysis.  Sources of epistemic uncertainty 
in analysis of steel structures include two-dimensional models of three-dimensional 
structures, structural models based on beam and column centerline dimensions that 
neglect beam-column panel zones, support conditions and connections that are neither 
fully rigid nor simple, neglect of shear deformations, and limitations in the supporting 
databases. 
 
The presence of epistemic uncertainty means that the structural fragility actually is 
described by a family of curves, reflecting incomplete knowledge regarding the parameters 
used to model the structural fragility: in the median, COV, and the CDF itself.  To first 
order, these uncertainties can be assumed to be vested in the estimate of the median 
capacity, mR, in Eq. 4.3.1.  [This is the customary of modeling epistemic uncertainty in 
seismic PSA of critical facilities; unpublished studies have shown that the contribution of 
uncertainty in βR is of secondary importance in comparison to that of uncertainty in mR.] 
Under this assumption, mR is replaced by a (Bayesian) random variable, MR, which is 
assumed to be modeled by a lognormal distribution with median mR and logarithmic 
standard deviation βU.  Then, the overall uncertainty in capacity (aleatory and epistemic) is 
displayed by the family of lognormal CDFs, defined by parameters (mR,βR,βU).  With this 
model, the 5-percent exclusion limit in Eqn 4.3.2 becomes a random variable as a result of 
the uncertainty in MR, modeled by βU.  The lower 5-percent confidence interval on R0.05 , 
Rk, is defined by, 
 
 
 Rk= mR exp[-1.645(βR + βU)]                                                                       (4.3.3) 
 
 
One might say (with a Bayesian interpretation) that the probability of surviving an 
earthquake event with intensity Rk is at least 95% with 95% confidence. 
 
Distinguishing between the different sources of uncertainty may create accounting 
difficulties in database management.  Moreover, in many applications, it is desirable to 
have one overall estimate of fragility for review, assessment and decision purposes that 
reflects both aleatory and epistemic uncertainty.  Such an estimate is provided by the mean 
fragility, defined as (Ellingwood, 1998) 
 
 
 E[FR(x)]  =  Φ[ln(x/mR)/βC]                                                                             (4.3.4)  
 
 
in which 
 
 
 βC = [βR

2 + βU
2]1/2                                                                                            (4.3.5) 
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At the usual levels of aleatory and epistemic uncertainty found in the assessment of steel 
(or reinforced concrete) structures, Rk in Eqn 4.3.3 corresponds to roughly the 1 to 2-
percentile value of E[FR(x)]. 
 
Limit state(s) of structural performance must be identified before the fragility model(s) can 
be constructed.  This is also a key step in the development of loss estimation 
methodologies.  Such limit states depend on the performance objectives of the building or 
other infrastructure system in which the structure must function or preserve its overall 
integrity, and the assessment of limit states requires a system reliability approach.  
Performance objectives usually are qualitative in nature:  the system must remain 
operational under normal or moderate hazards; the system must not endanger life safety 
under extreme hazards; etc.  Such goals must be transformed into structural limit states that 
can be verified by analysis or test.   The focus in design of steel frames according to the 
AISC LRFD Specification (AISC 1999) has been on ultimate strength because the key 
focus in building codes is life safety.  However, the structural strength limit state may be of 
lesser importance than a deformation-related limit state, especially when the structural 
frame is an integrated component of a complex building system in which structural, 
nonstructural, mechanical and electrical systems all must interface properly. Modern 
approaches to earthquake-resistant design of buildings and other structures are based on 
deformation capacity rather than on strength (e.g., Priestley, 1996; BSSC, 1997; 1998).  
Properly designed steel frames, particularly those that are highly redundant, may behave in 
a ductile manner under extreme loads, and yet the building may suffer damage to 
appurtenant systems at structural deformations well below those at incipient structural 
collapse. 
  
The fragility analysis of a steel frame requires a thorough understanding of the mechanics 
of structural response and the interactions between structural and nonstructural behavior to 
challenges over a wide range, including those at and beyond the design basis.  At such 
levels, the behavior of the structural system usually is highly nonlinear in nature. Because 
of the complexity of structural behavior in this range, closed-form models generally are not 
sufficient to describe their response to extreme earthquake events, and one must resort to 
nonlinear finite element analysis to support the fragility model (Song and Ellingwood, 
1999). 
 
4.3.2 Databases to support fragility assessment 
 
Supporting databases and statistics must be developed to model aleatory and epistemic 
uncertainties in all parameters known to affect the capacity of the structure.   Databases to 
describe some variables can be identified through a review of the literature.  Other 
parameters may have to be identified and estimated through expert opinion.  Proper 
construction of a consensus estimation survey (sometimes called a Delphi) and careful 
analysis of the results can lead to statistical models that subsequently can be updated using 
Bayesian techniques, if and when further information becomes available.  It must be 
emphasized that fragility modeling requires “best estimates” of performance rather than the 
(generally) conservative estimates that would be obtained from code formulas and nominal 
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material strengths; otherwise, these conservatisms may propagate through the analysis in an 
unpredictable way. 
 
Summaries of statistical data to describe strength of steel members (beams and columns, 
and connections) and structures subjected to static forces are available in published 
literature [e.g., Ellingwood and Hwang (1985); Dexter (2000)].  Some of these statistics are 
different from those used to develop the first-generation of LRFD specifications in the 
1970’s because changes in the interim have occurred in steel making and rolling practices.  
Most steel strengths (yield and ultimate tensile strengths) presented in the published 
literature are based on mill tests conducted in accordance with ASTM standard procedures.  
Mill tests of steel (and standard-cure concrete cylinder tests, for that matter) are conducted 
at a strain rate than is atypical of either static or dynamic loading of the structural system.  
The strength that should be used to assess reliability of frames under gravity load is the 
static strength in situ, i.e., the strength when loading to failure takes over a period of several 
minutes to one hour.  The mill test data for steel strength are adjusted to static conditions by 
the approximate relation Fy,stat = Fy,mill - 4 ksi (Galambos and Ravindra, 1978). Similarly, 
when the structural component or system is subjected to dynamic forces, the statistical 
properties of strength of steel for use in developing fragility curves should be adjusted for 
the increased rate of load.  The steel "dynamic" strengths presented correspond to loading 
to “failure” in approximately 1 - 5 seconds. Mill tests of steel are conducted at a strain rate 
that falls somewhere between "static" and "dynamic" rates of application of structural 
actions.   Since the precise rate of loading to failure in a steel frame subjected to earthquake 
ground motion is uncertain, it is conservative to ignore the increase in strength for dynamic 
load effects in seismic fragility assessment. 
 
Furthermore, while mill tests for A36 steel historically were performed using specimens 
taken from the webs of W-sections, for modern A992 structural W-shapes coupons now are 
taken from flanges rather than from the web, where the values of Fy are approximately 5% 
lower under the same test conditions. Finally, although some studies have indicated that 
yield strength decreases with increasing size or thickness, the data reviewed in this study 
indicate that this effect is negligible.   
 
The uncertainty in the finite element-based structural analysis that supports the fragility 
assessment should also be taken into account, as recent research has shown that this source 
is at least as important as variability in steel strength in a fragility assessment.  This 
uncertainty is epistemic in nature, as it arises from idealizations made in modeling the 
behavior of the structure analytically.  One can visualize this uncertainty by: (1) imagining 
that all properties of the structure are known from companion tests or independent 
measurement; (2) using these properties to analyze the ultimate capacity of the structure; 
(3) testing the structure to failure; and (4) comparing the predictions to test results.  The 
ratio of the test to calculated capacities is the (uncertain) modeling factor.  Refined 
structural models (e.g., nonlinear FEA) in the hands of a skilled analyst usually predict 
behavior more accurately than do design code models, and in such cases the mean of this 
modeling factor will be close to 1.0 (implying an unbiased estimate) and the COV usually 
will be on the order of 0.05.  When an approximate structural model is used, this source of 
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uncertainty can be at least as important as other sources that traditionally have been 
included in system reliability assessment. 
 
4.3.3 Description of Frame 
 
A three-story, four-bay steel moment-resisting frame was considered to illustrate the 
fragility modeling concepts.  This frame is typical of steel frames in urban areas of the 
Eastern United States, such as Boston, MA, Memphis, TN, or Charleston, SC that are 
exposed to moderate seismic hazards.  The studies herein were performed as a 
demonstration of concept, and the structural models were intentionally simplified.  The 
frame was modeled as a planar frame.  Centerline dimensions of the frame were used in the 
structural model, and the contribution of beam-column panel zones was neglected for 
simplicity.  On the other hand, both material and geometric nonlinearities (P-∆ effects) 
were included in the assessment.  The possibility of cracking or deterioration in the 
connections was not considered.   Other studies (Song and Ellingwood, 1999) have shown 
that cracking of welds in the connections may have a significant impact on response at 
larger intensities of ground motion, particularly if the connection deterioration is 
concentrated at one story.   
 
The fragility analysis requires a system reliability approach involving Monte Carlo 
simulation and repeated finite element analyses.  Because of the cost of performing 
nonlinear FE analysis, the number of simulations, N, necessary to model the uncertainties 
and to construct the fragility must be kept to a minimum.   In the present study, the yield 
strength, ultimate strength, and modulus of elasticity of the steel were modeled as 
deterministic and were set equal to their respective mean values.  The total uncertainty in 
behavior thus is vested in the ground motions, modeled by suites of appropriately scaled 
natural or synthetic ground motions.  In a subsequent phase of the study, the uncertainties 
in structural properties (including structural damping) will be included and an analysis of 
variance (ANOVA) will be performed to determine the dominant contributors to seismic 
fragility of frames designed in non-seismic regions.  As part of this phase, efficient random 
sampling plans aimed at minimizing the standard error associated with numerical 
experimentation (variance reduction techniques) will be employed (e.g., Imam and 
Conover, 1980; Rubenstein and Melamed, 1998); such plans currently are under 
development. 
 
The finite element analyses of the frame were performed using OpenSees, an open-source 
computational platform currently under development at the University of California at 
Berkeley.  The static nonlinear structural response of the frame (pushover) and eigenvalue 
extraction were checked independently using SAP 2000NL to gain insight on the epistemic 
uncertainties associated with the choice of finite element platform.  The general procedure 
was to first perform a static nonlinear “pushover” analysis of the frame to identify general 
characteristics of system behavior, i.e., redistribution of forces within the system 
subsequent to initial yield, locations of plastic hinging, and overall system ductility.  
Following the pushover analysis, the system responses to a suite of earthquake ground 
motions were determined, and the uncertainties in response and performance were 
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assessed.  Finally, an incremental dynamic analysis was performed to determine the 
capacity of the frame to withstand increasing levels of ground motion. 
 
The building with this frame is assumed to be located in Memphis, TN.  The plan and 
elevation of the frame are illustrated in Figure 4.3.1.  The frame was one of three “Pre-
Northridge” frames in Boston that were modeled as part of the recently completed SAC 
Project (Gupta and Krawinkler, 2000a; Yun, et al, 2002; Lee and Foutch, 2002).  It was 
designed by a consulting structural engineering firm using the National Building Code, 
1993 Edition.  The design of the lateral force-resisting system for this frame was governed 
by seismic effects.  Its capacity to withstand the wind forces stipulated in ASCE Standard 
7-98 and 7-02 in Memphis, TN was checked.  The maximum inter-story drift under 
(unfactored) design wind force is roughly h/1,300, in which h = story height.  Since 
common design office practice is to limit interstory drifts to h/500 - h/400, these frames 
meet the lateral stiffness requirements and, in fact, would be overly stiff if wind alone were 
the governing design consideration.   
 
4.3.4  Structural Response to Static Lateral Forces  
  
As a first step, a static nonlinear pushover analysis of this frame was performed.  The 
pushover results depend on the distribution of lateral forces.  It is customary to assume that 
the lateral forces are approximately proportional to those in the fundamental mode with 
shape (z/H)k,  in which z = elevation, H = building height, and k = constant.  Here, both 
linear (k = 1) and quadratic (k = 2) distributions of lateral force were assumed.  (In the SAC 
program, all pushover analyses were performed assuming that k = 2.)  The results of these 
static nonlinear pushover analyses are illustrated in Fig. 4.3.2.  The onset of nonlinear 
action begins at a drift of approximately 0.01H, at which point nonlinear response initiates 
at the right-hand ends of the beams in spans AB and BC of the roof and third story.  It was 
assumed in the SAC project that at the point where the tangent stiffness is 20% (or less) of 
the initial stiffness, small additional deformations will lead to large P-∆ moments and the 
possibility of incipient collapse.  The stiffness of this particular frame decreases to 20% of 
its initial value at an overall drift of approximately 0.023. 
 
4.3.5  Ground Motion Models 
 
Two sets of ground motions were used in this study.  The first set was generated in the 
SAC project for Boston, MA.  That ensemble contains 20 records corresponding to an 
earthquake with 2% probability of being exceeded in 50 years (denoted a 2/50 ensemble).  
The ensemble was a mix of natural (appropriately scaled) and synthetic ground motions, 
with 14 natural and 6 synthetic accelerograms. The second set of ground motions were 
generated as part of MAE Center research (Wen and Wu, 2001) for three sites in Mid-
America: Memphis, TN, Carbondale, IL, and St. Louis, MO (believed to represent a cross-
section of earthquake-prone sites in the central United States).   Ensembles of 10 ground 
motions corresponding to a 2/50 event were generated for each of these three sites.   In 
contrast to the SAC ground motions, all 30 ground motions derived by Wen and Wu were 
synthetic in nature.  Firm soil conditions were assumed in all cases.  None of the ensembles 
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selected contains “near-field” records (less than 10 km from the building site), the 
frequency contents of which are different from far-field records. 
 
Seismic fragility and risk assessment of buildings in Mid-America must utilize synthetic 
ground motions.   Unlike the Western United States, there are few ground motion records 
in Mid-America, and there are none that correspond to the large earthquakes that are likely 
to challenge modern building construction in that region.   Current research has raised some 
question as to the sensitivity of the fragility models to the ground motion ensembles 
selected for their development; hence, the selection of these two different ensembles.  
These and other issues related to fragility development are presented in the following 
section. 
 
4.3.6  Dynamic Response of Steel Frame to Earthquake Ground Motions 
 
The development of vulnerability functions requires characterization of ground motion by 
a suite of appropriate ground motions, determination of structural response (structural 
demand), and identification of performance limits (structural system capacity) and 
degrees of structural damage and losses associated with specific damage levels.  The first 
three are addressed in this section, providing the opportunity to discuss some specific 
current research issues that must be addressed in developing vulnerability functions and 
loss estimation methodologies for civil infrastructure in Mid-America.   Losses associated 
with specific damage levels will be considered in a later phase of the research program.      
 
We first characterize structural system response (measured by interstory rather than 
overall drift) to earthquake demand in a relatively simple way.  The model structure in 
Figure 4.3.1 is a regular, 3-story, 4-bay moment frame.  Its fundamental period is T1 = 
1.86 sec; the shape of the first mode is approximately linear, and its system behavior is 
determined (in the elastic range) mainly by its first mode.  Contributions of higher modes 
in this structure are relatively insignificant.   In such cases, Shome and Cornell (1998) 
have suggested that the ground motion intensity can be characterized by the spectral 
acceleration at the fundamental period, Sa (T1).  Vamvatsikos and Cornell (2001) showed 
subsequently that plots of maximum interstory drift ratios vs first mode spectral 
acceleration produced less dispersion than similar plots against peak ground acceleration 
for a steel moment frame in which T1 = 2.2 sec.  The smaller dispersion implies that 
ensembles with fewer ground motion records can yield the same confidence level in the 
response analyses. 
 
Thus, it is assumed that the seismic demand on this structural frame can be characterized 
by the following simple relation between interstory drift, θ, and Sa = Sa(T1):   
 
 θ = a Sa

b ε                                                                                                    (4.3.6a) 
 
or, in transformed linear form, 
 
 
 ln θ = ln a + b ln Sa + ln ε                                                                            (4.3.6b)  
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in which a and b are model constants and ε is a zero-median error that describes the 
uncertainty in the relationship.   Estimates of these model constants and the standard error 
can be determined by performing nonlinear dynamic analyses of the building frame using 
an appropriate ensemble of ground motions, determining the resulting maximum 
interstory drift, and performing a linear regression analysis of lnθ on lnSa utilizing eq 
(4.3.6b) to determine constants a, b and the standard error, σlnε. 
 
To establish a frame of reference for the range of spectral accelerations assumed in the 
following results, the median seismic hazard curve for Memphis, TN is presented in 
Figure 4.3.3.  This hazard curve is obtained from the U.S. Geological Survey website 
indicated in the figure, which presents spectral accelerations as a function of return period 
for T1 = 0.2 sec and 1.0 sec.  These spectral accelerations are used to anchor a 5-percent 
damped response spectrum, from which the spectral accelerations at other fundamental 
periods can be determined.  As noted above, fundamental period for the frame in this 
study is 1.86 sec.  The range of return periods covered in Figure 4.3.3 is approximately 
600 to 6,000 years. 
 
The results of this analysis are presented in Figures 4.3.4 using the 14 unscaled natural 
SAC ground motions for Boston, MA and in Figure 4.3.5 using the synthetic Wen/Wu 
motions for Carbondale, IL, St. Louis, MO and Memphis, TN.  The results obtained using 
these ensembles are: 

 
 
θ = 0.1052 Sa

0.82   (SAC Boston - natural)                                                 (4.3.7a) 
 
θ = 0.0851 Sa

0.82   (Wen/Wu - synthetic)                                                    (4.3.7b) 
 

 
The median maximum interstory drifts obtained using the natural and synthetic ground 
motions differ by 24%, the higher drifts being associated with the natural ground motions.  
Moreover, the variability in the demand indicated by the natural records is substantially 
larger (0.33 vs 0.13).   Accordingly, there appear to be systemic differences in the seismic 
demands from suites of natural and synthetic ground motions.  The Shome/Cornell study 
(1998), which utilized only natural records, indicated that the relation between deformation 
and Sa was relatively insensitive to the ensemble selected, provided that accelerograms 
were selected from events of similar magnitude and distance and no near-field records were 
included.  The reason for the difference here is unclear.  A comparison of displacements of 
elastic and inelastic systems for a frame with ductility 4 (Figure 4.3.6) for Boston Record 
30 (natural) and Boston Record 21 (synthetic) indicates no systematic difference across 
the period range.  Research is continuing on this issue, with an aim of identifying 
systemic differences in structural responses to natural and artificial ground motions.  
Meanwhile, ensembles of synthetic records should be used with caution in fragility 
modeling.    
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Research conducted in the SAC Project indicated that for structural systems designed for 
high-seismic areas (e.g., Los Angeles, CA), constant b in eq (4.3.6) was approximately 
equal to 1.0, the implication being that displacements for elastic and yielding systems are 
approximately equal for first mode-dominant systems with fundamental periods greater 
than about 0.5 sec.  This equivalence was first observed by Newmark, Veletsos, and 
Chelapati over four decades ago, and has since been confirmed by other investigators 
(e.g., Gupta and Krawinkler, 2000b).  The results in Figure 4.3.6 and the values of b in 
Figures 4.3.4 and 4.3.5 (b = 0.82) are basically consistent with this observation.  Figure 
4.3.7 illustrates the coefficient of variation in maximum interstory drift as a function of Sa 
as it increases from 0.05g to 0.6g, obtained by scaling the Wen/Wu ground motion 
ensembles upward in order to cover the indicated range in spectral acceleration.  
Although the coefficient of variation appears to increase with Sa, the ensembles used to 
develop Figure 4.3.7 are relatively small; if an overall value is required, an appropriate 
value might be about 0.30; this value is used in the subsequent fragility analysis to model 
the uncertainty in demand.   
 
The capacity of the steel moment frame is determined from an incremental dynamic 
analysis (IDA).  An IDA involves multiple nonlinear dynamic analyses of a structure 
subjected to an earthquake record, which is incrementally scaled upward from the elastic 
range until the structure “fails” according to some definition, described subsequently.   
The process is repeated using different accelerograms in the ensemble until a plot of Sa vs 
interstory drift is obtained for the entire ensemble.  The results then are post-processed to 
determine the CDF of the system capacity.   An  IDA of the frame in Figure 4.3.1using 
the Wen/Wu 2/50 ensemble for Memphis, TN is provided in Figure 4.3.8.  The ground 
motion scaling cannot be too coarse, lest abrupt changes in structural system behavior not 
be captured. On the other hand, since an IDA is computationally intensive, a compromise 
must be struck between these concerns.   As a practical matter, step sizes are kept 
relatively large in linear portions of the analysis, and are refined as the structure begins to 
deviate from linear behavior.  The non-monotonic irregularities in the results of some of 
the incremental dynamic analyses have been noted by other investigators (e.g., 
Vamvatsikos and Cornell, 2001).  
 
The structural response quantity selected in this study to represent overall system capacity 
is maximum inter-story drift.  The presumption is that maximum inter-story drifts can be 
mapped to stipulated building performance or damage levels: Immediate Occupancy, Life 
Safety and Incipient Collapse.   For purposes of illustrating the development of 
vulnerability curves, we will assume that this mapping can be identified (FEMA 273/356); 
however, it should be emphasized that this is currently a significant research issue in the 
earthquake structural engineering community.  We assume the following limits: 
 
Immediate occupancy (IO) level deformation demand is limited to the point where non-
structural components such as doors, windows and cladding are undamaged or are 
damaged but can be repaired easily. In this study this level will be represented by the 
limit of elastic behavior of the structural frame. The nonlinear static pushover analysis of 
the three-story frame showed that 
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The slope of the pushover curve drops to 95% of initial slope at a drift angle 
0.86%. 
The slope of the pushover curve drops to 90% of initial slope at a drift angle 
0.95%. 
The slope of the pushover curve drops to 85% of linear slope at a drift angle 1 %. 

 
These results are consistent with those found by Song and Ellingwood (1999) in an 
examination of four steel moment frame buildings damaged during the Northridge 
Earthquake.  In the light of above findings, one can assume that the behavior of many 
steel moment frames designed by modern codes deviates from nonlinearity at 
approximately 1% drift.  Since nonlinear structural action is likely to be accompanied by 
limited nonstructural damage, this drift value has been chosen to represent the IO level. 
 
Life Safety (LS) level deformation demand is difficult to determine. It is obvious that it 
will be somewhere between the Immediate Occupancy and Incipient Collapse levels, as 
partial collapse of heavy structural elements such as slabs or beams clearly are life-
threatening but in a redundant system may not necessarily lead to overall instability or 
collapse of the structural system.   There is no obvious way of determining the interstory 
drift that threatens life safety.  A point where Structural Damage (SD) occurs may be 
easier to identify; this may occur at a drift of approximately 2%. 
 
Incipient collapse(IC) level deformation demands are those at which the frame as a 
whole is on the verge of reaching the point of overall instability, where small 
perturbations in force are accompanied by very large increments in lateral deformation.  
To determine this deformation limit, a series of Incremental Dynamic Pushover Analyses 
(IDA) (Vamvatsikos and Cornell, 2001) were performed using ensembles of the Wen/Wu 
ground motions.  The incipient collapse levels of the three-story frame were determined 
by inspection from the IDA curves as the point at which the slope decreased to 20% of 
initial value or highly irregular behavior was observed.  The mean value and standard 
deviation and coefficient of variation obtained from these results were 8.8%, 2% and 
23%, respectively.   In effect, then, these statistics define the ultimate capacity of the 
structural system to withstand earthquake ground motions. [A similar calculation using 
the 2/50 SAC ground motions for Boston produced a mean capacity of 9.5% using 14 
natural records and 9.4% using the entire ensemble of 20 records.] 
 
The seismic fragilities for the three performance levels above (IO, LS and IC) are presented 
in Figures 4.3.9, 4.3.10 and 4.3.11.  Two different demand relations (eqs 4.3.6) were 
utilized in order to demonstrate the sensitivity of the seismic fragilities to the choice of 
ground motion ensemble selected to generate these relationships.   The fragilities for the 
immediate occupancy and structural damage performance levels appear to be relatively 
insensitive to the seismic demand model, as is the 5-percentile of the fragility in all cases.  
The implications of this insensitivity are discussed in the following section. 
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4.3.7 Perspectives on risk and loss estimation 
 
The fragilities for IO, SD and IC presented in Figures 4.3.9, 4.3.10 and 4.3.11 can be used 
as a basis for risk-informed decision-making.  For example, the median capacity [using the 
Wen/Wu ensembles and expressed in units of Sa(T1)] of the frame in Memphis, TN at these 
three performance levels are, respectively, 0.073g, 0.17g and 1.04g.  The corresponding 5-
percentile values are, respectively, 0.033g, 0.08g and 0.5g, respectively.  In other words, 
there is a 90% probability that the building could be occupied immediately following an 
earthquake causing a spectral acceleration of 0.033g, one a mean return period of 
approximately 500 years for this three-story frame (cf Figure 4.3.3).  How best to 
communicate this risk depends on the preference of the decision-maker. 
 
Additional perspectives on the role of structural response and the relative importance of 
fragility parameters mR and βC on seismic risk can be obtained from an analysis of the limit 
state probability: 
 
 
 P[LS] =   ∫  FR(x) |dH(x)/dx| dx                                                                      (4.3.8) 
 
 
in which FR(x) is defined by mean fragility (Eqn 4.3.4) and H(x) is the seismic hazard, 
defined as the annual probability that earthquake intensities of level x are exceeded.  Over 
the range of significance to structural safety, the seismic hazard curve can be described, to 
first approximation, by, 
 
 
 ln H(x)  =  A - k ln x                                                                                       (4.3.9) 
 
 
in which slope k of H(x) plotted on log-log paper is related to the COV in annual extreme 
ground motion (acceleration).  With the mean fragility described by the lognormal 
distribution in Eqn 4.3.4, the limit state probability becomes, 
 
 
 P[LS] = H(mR) exp[(kβC)2/2]                                                                         (4.3.10) 
 
 
In other words, the limit state probability equals the seismic hazard evaluated at the median 
capacity, H(mR), multiplied by a correction factor.  In the Eastern US and Mid-America, 
the hazard curve is very flat (COV in annual extreme in excess of 100%) and k typically is 
on the order of 1 to 2 (http://eqint.cr.usgs.gov). Such a hazard curve for Memphis, TN is 
illustrated in Figure 4.3.3.  Values of βc in Figures 4.3.9 – 4.3.11 are approximately 0.45 in 
all cases.  With k = At Memphis, TN, k = 0.98, and the correction factor in Eqn 4.3.8 
becomes 1.10.  Since the order of magnitude in P[LS] is unchanged, this suggests that the 
uncertainty in steel frame capacity, measured by βC, has only a marginal impact on seismic 
risk.   This notion will be tested fully in the next phase of the study using an efficient 



 89

sampling plan to propagate the uncertainties in the structural system analysis, as described 
previously.  
 
Fragility modeling can be used to test the viability of proposed code provisions.  It also can 
be used to assess the need for upgrading an existing facility when new information suggests 
that the original design conditions may not have been sufficient, or for structural 
maintenance or rehabilitation and repair following the occurrence of an earthquake.  
Rehabilitation and repair invariably are costly, can be invasive and disruptive to the 
function of the facility, may actually cause damage to the structure in some instances (e.g., 
to weldments), and may not even be feasible in others.  Thus, a properly constructed (and 
peer-reviewed) fragility can provide quantitative evidence that an existing steel structure 
still can perform its intended function, even though it may not satisfy all requirements of 
the latest building code. 
 
The starting point for any such evaluation must be a benchmark fragility of the frame in the 
as-built condition, which should be developed using methods similar to those described in 
this study.  It is recommended that the mean fragility (Eqn 4.3.4) be used for this purpose.  
All uncertainties should be evaluated carefully; not all uncertainties are equally significant 
for risk.  Subsequent changes in fragility due to in-service modifications, cracking, 
corrosion or other manifestations of degradation then can be identified clearly, and the 
fragility may be updated periodically during the service life of the building (or during a 
period of extended service) following inspection. Since minor changes in βC may have a 
negligible impact on limit state probability for seismic events in the Eastern United States, 
these periodic revisions to structural fragility might be made by performing only one 
(median-centered) nonlinear structural analysis and assuming that βC remains unchanged 
unless there were substantial evidence to the contrary.  This would lead to a revised 
estimate, mR, which would serve as the anchor point of the revised mean fragility curve and 
would cause it to shift horizontally.  This revised curve could be compared to the current 
design basis or other review-level event of interest.  The rate of change in fragility over an 
extended service period may be of particular interest, as it would indicate the likelihood of 
deterioration due to structural aging or damage from some other natural or man-made 
hazard.  Such a finding would warrant a comprehensive investigation and assessment of 
remaining structural integrity. 
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Figure 4.3.1 – Steel moment frame in region of moderate seismicity 
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Figure 4.3.2 – Static pushover analysis of steel moment frame 
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Figure 4.3.3 – Mean seismic hazard for Memphis, TN 
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Figure 4.3.4 – Interstory drift (2/50 SAC natural motions for Boston, MA) 
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Figure 4.3.5 – Interstory drift (2/50 Wen/Wu synthetic motions for Memphis, TN) 
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Figure 4.3.6 – Elastic and inelastic displacements for frame with ductility of 4 
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Figure 4.3.7 – Coefficient of variation in maximum interstory drift demand 
 
 



 94

          

0

0.3

0.6

0.9

1.2

1.5

0 0.02 0.04 0.06 0.08 0.1 0.12

M axim um  Interstory Drift Angle

S
a(

T
1)

(g
)

 
 

Figure 4.3.8 – Incremental dynamic pushover – 2/50 Wen/Wu ground motions for 
Memphis, TN 
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Figure 4.3.9 – Seismic fragility – immediate occupancy 
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Figure 4.3.10 – Seismic fragility – life safety 
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Figure 4.3.11 – Seismic fragility - incipient collapse 
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5.0 Summary and Conclusions 
 
A framework for vulnerability assessment of building structures for consequence-based 
engineering under seismic excitation is presented.  The method and assessment 
procedures are demonstrated for a steel building frame, a reinforced concrete building 
frame, and an un-reinforced masonry building with a lateral force-resisting shear wall 
system.  The methodology is based on a review of current state-of-the-art of methods of 
uncertainty modeling and treatments in earthquake engineering (Wen et al, 2003).  The 
emphasis is on systematic treatment of uncertainties in seismic excitation, dynamic 
response demand on the lateral force-resisting structural and capacity of building 
structures in resisting limit states from immediate occupancy to incipient collapse.  The 
nonlinear inelastic response behaviors of the building after damage occurs until dynamic 
instability are realistically considered.  Both aleatory (randomness) and epistemic 
(modeling errors) uncertainties in the demand and capacity are considered, with the 
importance of the latter emphasized since it has not been adequately considered in the 
past.  The proposed methodology is an efficient tool in support of consequence-based 
engineering, where explicit consideration of uncertainty is an integral part of the 
engineering risk management and decision process.  The methodology also can be 
applied to other building, bridge or civil infrastructure systems. 
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